Sand Rubber Mixtures under Oedometric Loading: Sand-like vs. Rubber-like Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Sample Fabrication, and Experimental Setup
2.2. Experimental Program
3. Results and Discussion
3.1. General One-Dimensional Response
3.2. One-Dimensional Confined Stiffness
3.3. Swelling Behavior
4. Conclusions
- The magnitude of the packing deformation increased as the rubber fraction increased. Further, for a given rubber fraction, the mixture with larger sand particles (Sr-D) was more compressible, while the mixture with smaller sand particles (sR-D) was less compressible than the mixture with equal-sized rubber and sand particles. This trend is in accordance with previous observations by [41]. One reason could be that a greater number of rubber (flexible) particles for the same rubber volume fraction increases the displacement/rotation of all particles, including rigid ones, thus, relaxing the particle jamming.
- The concavity of the loading curve in the e—log () plane increased for pure sand packing with an increase in the normal stress. However, with the addition of rubber, the curve was found to become more convex at higher values of stress. The observed curvature change can be attributed to the saturation of the voids due to their filling with rubber, thus, indicating the impact of rubber addition on the macroscopic response of the mixture. An estimation of the mean curvature was performed. The mixtures were categorized into “sand-like” if the concavity increased and “rubber-like” if it decreased with the rubber fraction. This classification is helpful since it gives an objective definition of packing behavior on the basis of vertical stress and rubber fraction.
- The one-dimensional confined stiffness was found to decrease with an increase in the rubber fraction. A power law decrease of the modulus number, m, with the rubber fraction was observed for both densities. The ratio between the m-values for loose and dense packings was relatively constant around 75% (standard deviation of 7%) on all the range of rubber fractions. The power law index was relatively constant for all tests, with slightly higher values for looser packings. Moreover, for a given rubber fraction, coarser rubber particle packings (sR-D) showed a stiffer response than the corresponding equal-sized particle mixtures, indicating a stronger sand contact force network.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Salgado, R.; Bernal, A.; Lovell, C.W. Shredded tires and rubber-sand as lightweight backfill. J. Geotech. Geoenviron. Eng. 1999, 125, 132–141. [Google Scholar] [CrossRef]
- Bosscher, P.J.; Edil, T.B.; Kuraoka, S. Design of highway embankments using tire chips. J. Geotech. Geoenviron. Eng. 1997, 123, 295–304. [Google Scholar] [CrossRef]
- Youwai, S.; Bergado, D.T. Numerical analysis of reinforced wall using rubber tire chips–sand mixtures as backfill material. Comput. Geotech. 2004, 31, 103–114. [Google Scholar] [CrossRef]
- Yoon, S.; Prezzi, M.; Siddiki, N.Z.; Kim, B. Construction of a test embankment using a sand–tire shred mixture as fill material. Waste Manag. 2006, 26, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, M.; Zelibor, J.L. Scrap tires used in rubber-modified asphalt pavement and civil engineering applications. In Utilization of Waste Materials in Civil Engineering Construction; ASCE: Reston, VA, USA, 1993; pp. 182–192. [Google Scholar]
- Humphrey, D.N.; Eaton, R.A. Field performance of tire chips as subgrade insulation for rural roads. In Proceedings of the 6th International Conference on Low-Volume Roads, Minneapolis, MN, USA, 25–29 June 1995; Volume 2, pp. 77–86. [Google Scholar]
- Poh, P.S.H.; Broms, B.B. Slope stabilization using old rubber tires and geotextiles. J. Perform. Constr. Facil. 1995, 9, 76–79. [Google Scholar] [CrossRef]
- Garga, V.K.; O’Shaughnessy, V. Tire-reinforced earthfill. Part 1: Construction of a test fill, performance, and retaining wall design. Can. Geotech. J. 2000, 37, 75–96. [Google Scholar] [CrossRef]
- Brunet, S.; De La Llera, J.C.; Kausel, E. Non-linear modeling of seismic isolation systems made of recycled tire-rubber. Soil Dyn. Earthq. Eng. 2016, 85, 134–145. [Google Scholar] [CrossRef]
- Kaneko, T.; Orense, R.P.; Hyodo, M.; Yoshimoto, N. Seismic response characteristics of saturated sand deposits mixed with tire chips. J. Geotech. Geoenviron. Eng. 2013, 139, 633–643. [Google Scholar] [CrossRef]
- Xiong, W.; Yan, M.R.; Li, Y.Z. Geotechnical seismic isolation system—Further experimental study. Appl. Mech. Mater. 2014, 580–583, 1490–1493. [Google Scholar] [CrossRef]
- Tsiavos, A.; Alexander, N.A.; Diambra, A.; Ibraim, E.; Vardanega, P.J.; Gonzalez-Buelga, A.; Sextos, A. A sand-rubber deformable granular layer as a low-cost seismic isolation strategy in developing countries: Experimental investigation. Soil Dyn. Earthq. Eng. 2019, 125, 105731. [Google Scholar] [CrossRef]
- Kaneda, K.; Hazarika, H.; Yamazaki, H. Numerical simulations of earth pressure reduction using tire chips in sand backfill. J. Appl. Mech. 2007, 10, 467–476. [Google Scholar] [CrossRef]
- Hazarika, H.; Kohama, E.; Sugano, T. Underwater shake table tests on waterfront structures protected with tire chips cushion. J. Geotech. Geoenviron. Eng. 2008, 134, 1706–1719. [Google Scholar] [CrossRef]
- Senetakis, K.; Anastasiadis, A.; Pitilakis, K. Dynamic properties of dry sand/rubber (Srm) and gravel/rubber (Grm) mixtures in a wide range of shearing strain amplitudes. Soil Dyn. Earthq. Eng. 2012, 33, 38–53. [Google Scholar] [CrossRef]
- Tsang, H.-H. Seismic isolation by rubber–soil mixtures for developing countries. Earthq. Eng. Struct. Dyn. 2008, 37, 283–303. [Google Scholar] [CrossRef]
- Badarayani, P.R.; Artoni, R.; Cazacliu, B.; Ibraim, E.; Richard, P. Segregation of sand-rubber chips mixtures subject to vertical tapping under confinement. Powder Technol. 2021, 393, 764–772. [Google Scholar] [CrossRef]
- Attom, M.; Khedaywi, T.; Mousa, S.A. The effect of shredded waste tire on the shear strength, swelling and compressibility properties of the clayey soil. J. Solid Waste Technol. Manag. 2007, 33, 219–227. [Google Scholar]
- Lee, J.-S.; Dodds, J.; Santamarina, J.C. Behavior of rigid-soft particle mixtures. J. Mater. Civ. Eng. 2007, 19, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Promputthangkoon, P.; Hyde, A. Compressibility and liquefaction potential of rubber composite soils. In Proceedings of the International Workshop on Scrap Tire Derived Geomaterials-Opportunities and Challenges, Yokosuka, Japan, 23–24 March 2007; pp. 161–170. [Google Scholar]
- Trouzine, H.; Bekhiti, M.; Asroun, A. Effects of scrap tyre rubber fibre on swelling behaviour of two clayey soils in Algeria. Geosynth. Int. 2012, 19, 124–132. [Google Scholar] [CrossRef]
- Fu, R.; Coop, M.R.; Li, X.Q. The mechanics of a compressive sand mixed with tyre rubber. Géotech. Lett. 2014, 4, 238–243. [Google Scholar] [CrossRef]
- Benessalah, I.; Arab, A.; Sadek, M.; Bouferra, R. Laboratory study on the compressibility of sand–rubber mixtures under one dimensional consolidation loading conditions. Granul. Matter 2019, 21, 7. [Google Scholar] [CrossRef]
- Pincus, H.; Edil, T.; Bosscher, P. Engineering properties of tire chips and soil mixtures. Geotech. Test. J. 1994, 17, 453. [Google Scholar] [CrossRef]
- Foose, G.J.; Benson, C.H.; Bosscher, P.J. Sand reinforced with shredded waste tires. J. Geotech. Eng. 1996, 122, 760–767. [Google Scholar] [CrossRef]
- Zornberg, J.G.; Cabral, A.R.; Viratjandr, C. Behaviour of tire shred sand mixtures. Can. Geotech. J. 2004, 41, 227–241. [Google Scholar] [CrossRef]
- Asadi, M.; Thoeni, K.; Mahboubi, A. An experimental and numerical study on the compressive behavior of sand-rubber particle mixtures. Comput. Geotech. 2018, 104, 185–195. [Google Scholar] [CrossRef]
- Neaz Sheikh, M.; Mashiri, M.S.; Vinod, J.S.; Tsang, H.-H. Shear and compressibility behavior of sand–tire crumb mixtures. J. Mater. Civ. Eng. 2013, 25, 1366–1374. [Google Scholar] [CrossRef]
- Rouhanifar, S.; Afrazi, M.; Fakhimi, A.; Yazdani, M. Strength and deformation behaviour of sand-rubber mixture. Int. J. Geotech. Eng. 2021, 15, 1078–1092. [Google Scholar] [CrossRef]
- Kim, H.-K.; Santamarina, J.C. Sand–rubber mixtures (Large rubber chips). Can. Geotech. J. 2008, 45, 1457–1466. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Truong, Q.H.; Lee, J.-S. Cementation and bond degradation of rubber–sand mixtures. Can. Geotech. J. 2010, 47, 763–774. [Google Scholar] [CrossRef]
- Anastasiadis, A.; Senetakis, K.; Pitilakis, K. Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures. Geotech. Geol. Eng. 2012, 30, 363–382. [Google Scholar] [CrossRef]
- Senetakis, K.; Anastasiadis, A. Effects of state of test sample, specimen geometry and sample preparation on dynamic properties of rubber–sand mixtures. Geosynth. Int. 2015, 22, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Senetakis, K. Influence of creep on the small-strain stiffness of sand–rubber mixtures. Géotechnique 2022, 72, 899–910. [Google Scholar] [CrossRef]
- Fu, R.; Coop, M.R.; Li, X.Q. Influence of particle type on the mechanics of sand–rubber mixtures. J. Geotech. Geoenviron. Eng. 2017, 143, 04017059. [Google Scholar] [CrossRef] [Green Version]
- Tasalloti, A.; Chiaro, G.; Murali, A.; Banasiak, L. Physical and mechanical properties of granulated rubber mixed with granular soils—A literature review. Sustainability 2021, 13, 4309. [Google Scholar] [CrossRef]
- Platzer, A.; Rouhanifar, S.; Richard, P.; Cazacliu, B.; Ibraim, E. Sand–rubber mixtures undergoing isotropic loading: Derivation and experimental probing of a physical model. Granul. Matter 2018, 20, 81. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, J.; Riaz, A.; Bernal-Sanchez, J.; Barreto, D.; McDougall, J.; Miranda-Manzanares, M.; Marinelli, A.; Dimitriadi, V. Particle–scale interactions and energy dissipation mechanisms in sand–rubber mixtures. Géotechnique Lett. 2019, 9, 263–268. [Google Scholar] [CrossRef]
- David Suits, L.; Sheahan, T.; Ghazavi, M.; Sakhi, M. Optimization of aspect ratio of waste tire shreds in sand-shred mixtures using cbr tests. Geotech. Test. J. 2005, 28, 12126. [Google Scholar] [CrossRef]
- Rao, G.V.; Dutta, R.K. Compressibility and strength behaviour of sand–tyre chip mixtures. Geotech. Geol. Eng. 2006, 24, 711–724. [Google Scholar] [CrossRef]
- Lee, C.; Truong, Q.H.; Lee, W.; Lee, J.-S. Characteristics of rubber-sand particle mixtures according to size ratio. J. Mater. Civ. Eng. 2010, 22, 323–331. [Google Scholar] [CrossRef]
- Gotteland, P.; Lambert, S.; Balachowski, L. Strength characteristics of tyre chips-sand mixtures. Stud. Geotech. Mech. 2005, 27, 55–66. [Google Scholar]
- Mashiri, M.S.; Vinod, J.S.; Sheikh, M.N.; Tsang, H.-H. Shear strength and dilatancy behaviour of sand–tyre chip mixtures. Soils Found. 2015, 55, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Lanzano, G.; Visone, C.; Bilotta, E.; Santucci De Magistris, F. Experimental assessment of the stress–strain behaviour of leighton buzzard sand for the calibration of a constitutive model. Geotech. Geol. Eng. 2016, 34, 991–1012. [Google Scholar] [CrossRef]
- Rouhanifar, S. Mechanics of Soft-Rigid Soil Mixtures; University of Bristol: Bristol, UK, 2017. [Google Scholar]
- Badarayani, P.; Richard, P.; Cazacliu, B.; Artoni, R.; Ibraim, E. A numerical and experimental study of sand-rubber mixtures subjected to oedometric compression. E3S Web Conf. 2019, 92, 14010. [Google Scholar] [CrossRef]
- Selig, E.; Ladd, R. Preparing test specimens using undercompaction. Geotech. Test. J. 1978, 1, 16–23. [Google Scholar] [CrossRef]
- Ibraim, E.; Diambra, A.; Russell, A.R.; Muir Wood, D. Assessment of laboratory sample preparation for fibre reinforced sands. Geotext. Geomembr. 2012, 34, 69–79. [Google Scholar] [CrossRef]
- Janbu, N. Soil compressibility as determined by oedometer and triaxial tests. In Proceedings of the European Conference on Soil Mechanics and Foundation Engineering (SMFE), Budapest, Hungary, 24–27 September 1963; Volume 1, pp. 19–25. [Google Scholar]
- McDowell, G.R.; Bolton, M.D.; Robertson, D. The fractal crushing of granular materials. J. Mech. Phys. Solids 1996, 44, 2079–2101. [Google Scholar] [CrossRef]
Sand–Rubber Mixture Type | Sand Particle Mean Size, D50 (mm) | Rubber Particle Mean Size, D50 (mm) | Sand/Rubber Mean Size Ratio | Rubber Fraction, xr (%) | Sample Void Ratio at the Beginning of Test, eo |
---|---|---|---|---|---|
SR-D | 1.8 | 1.8 | 1.0 | 0 | 0.647 |
10 | 0.646 | ||||
20 | 0.644 | ||||
25 | 0.643 | ||||
30 | 0.642 | ||||
40 | 0.641 | ||||
50 | 0.640 | ||||
SR-L | 1.8 | 1.8 | 1.0 | 0 | 0.748 |
10 | 0.746 | ||||
20 | 0.744 | ||||
25 | 0.744 | ||||
30 | 0.742 | ||||
40 | 0.742 | ||||
50 | 0.740 | ||||
sr-D | 1.4 | 1.4 | 1.0 | 0 | 0.647 |
10 | 0.645 | ||||
20 | 0.645 | ||||
25 | 0.644 | ||||
30 | 0.643 | ||||
40 | 0.642 | ||||
50 | 0.642 | ||||
sR-D-10 | 0.7 | 1.4 | 0.5 | 10 | 0.646 |
sR-D-50 | 50 | 0.645 | |||
Sr-D-10 | 2.1 | 1.4 | 1.5 | 10 | 0.642 |
Sr-D-50 | 50 | 0.642 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badarayani, P.; Cazacliu, B.; Ibraim, E.; Artoni, R.; Richard, P. Sand Rubber Mixtures under Oedometric Loading: Sand-like vs. Rubber-like Behavior. Appl. Sci. 2023, 13, 3867. https://doi.org/10.3390/app13063867
Badarayani P, Cazacliu B, Ibraim E, Artoni R, Richard P. Sand Rubber Mixtures under Oedometric Loading: Sand-like vs. Rubber-like Behavior. Applied Sciences. 2023; 13(6):3867. https://doi.org/10.3390/app13063867
Chicago/Turabian StyleBadarayani, Pravin, Bogdan Cazacliu, Erdin Ibraim, Riccardo Artoni, and Patrick Richard. 2023. "Sand Rubber Mixtures under Oedometric Loading: Sand-like vs. Rubber-like Behavior" Applied Sciences 13, no. 6: 3867. https://doi.org/10.3390/app13063867
APA StyleBadarayani, P., Cazacliu, B., Ibraim, E., Artoni, R., & Richard, P. (2023). Sand Rubber Mixtures under Oedometric Loading: Sand-like vs. Rubber-like Behavior. Applied Sciences, 13(6), 3867. https://doi.org/10.3390/app13063867