Insight into the Gluten-Free Dough and Bread Properties Obtained from Extruded Rice Flour: Physicochemical, Mechanical, and Molecular Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Flour Preparation
2.2. Flour Characteristics
2.2.1. Basic Chemical Composition
2.2.2. Pasting Properties
2.2.3. Microstructure
2.2.4. Oil and Water Binding Capacity
2.3. Dough and Bread Making
2.4. Rheological Properties of Dough
2.5. Bread Properties Analyses
2.5.1. Specific Volume
2.5.2. Texture Analysis
2.5.3. Water Activity
2.5.4. Low Field Nuclear Magnetic Resonance (LF NMR) Relaxometry
2.6. Statistical Analysis
3. Results and Discussion
3.1. Basic Flour Composition
3.2. Rice Flour Microstructure
3.3. Pasting Properties of Flour
3.4. Oil and Water Binding Capacity
3.5. Rheological Properties of Dough
3.6. Water Behavior
3.7. Texture and Volume of Gluten-Free Breads
3.8. Statistical Consideration of the Extrusion Effect of Rice Flour on Analyzed Parameters of Dough and Final Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hager, A.-S.; Arendt, E.K. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocoll. 2013, 32, 195–203. [Google Scholar] [CrossRef]
- Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, J.; Fauconnier, M.L. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour. Food Chem. 2018, 239, 1064–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renzetti, S.; Rosell, C.M. Role of enzymes in improving the functionality of proteins in non-wheat dough systems. J. Cereal Sci. 2016, 67, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Sarabhai, S.; Prabhasankar, P. Influence of whey protein concentrate and potato starch on rheological properties and baking performance of Indian water chestnut flour based gluten free cookie dough. LWT-Food Sci. Technol. 2015, 63, 1301–1308. [Google Scholar] [CrossRef]
- Vallons, K.J.R.; Ryan, L.A.M.; Arendt, E.K. Promoting structure formation by high pressure in gluten-free flours. LWT-Food Sci. Technol. 2011, 44, 1672–1680. [Google Scholar] [CrossRef]
- Marston, K.; Khouryieh, H.; Aramouni, F. Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT-Food Sci. Technol. 2016, 65, 637–644. [Google Scholar] [CrossRef]
- Gómez, M.; Martínez, M.M. Changing flour functionality through physical treatments for the production of gluten-free baking goods. J. Cereal Sci. 2016, 67, 68–74. [Google Scholar] [CrossRef]
- Gulzar, B.; Hussain, S.Z.; Naseer, B.; Naik, H.R. Enhancement of resistant starch content in modified rice flour using extrusion technology. Cereal Chem. 2021, 98, 634–641. [Google Scholar] [CrossRef]
- Das, A.B.; Bhattacharya, S. Characterization of the batter and gluten-free cake from extruded red rice flour. LWT 2019, 102, 197–204. [Google Scholar] [CrossRef]
- Ding, Q.-B.; Ainsworth, P.; Tucker, G.; Marson, H. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. J. Food Eng. 2005, 66, 283–289. [Google Scholar] [CrossRef]
- Martínez, M.M.; Oliete, B.; Román, L.; Gómez, M. Influence of the Addition of Extruded Flours on Rice Bread Quality. J. Food Qual. 2014, 37, 83–94. [Google Scholar] [CrossRef] [Green Version]
- El-Dash, A.A. Molecular structure of gluten and viscoelastic properties of dough: A new concept. In The First Brazilian Congress Proteins; Editoria da Unicamp: Campinas, Brazil, 1991; pp. 513–530. [Google Scholar]
- Martínez, M.; Oliete, B.; Gómez, M. Effect of the addition of extruded wheat flours on dough rheology and bread quality. J. Cereal Sci. 2013, 57, 424–429. [Google Scholar] [CrossRef]
- Jafari, M.; Koocheki, A.; Milani, E. Physicochemical and sensory properties of extruded sorghum–wheat composite bread. J. Food Meas. Charact. 2018, 12, 370–377. [Google Scholar] [CrossRef]
- Jafari, M.; Koocheki, A.; Milani, E. Effect of extrusion cooking of sorghum flour on rheology, morphology and heating rate of sorghum–wheat composite dough. J. Cereal Sci. 2017, 77, 49–57. [Google Scholar] [CrossRef]
- Patil, S.S.; Rudra, S.G.; Varghese, E.; Kaur, C. Effect of extruded finger millet (Eleusine coracan L.) on textural properties and sensory acceptability of composite bread. Food Biosci. 2016, 14, 62–69. [Google Scholar] [CrossRef]
- Sun, H.; Ju, Q.; Ma, J.; Chen, J.; Li, Y.; Yuan, Y.; Hu, Y.; Fujita, K.; Luan, G. The effects of extruded corn flour on rheological properties of wheat-based composite dough and the bread quality. Food Sci. Nutr. 2019, 7, 2977–2985. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Kaori, F.; Ma, L.; Gao, M.; Dong, C.; Wang, J.; Luan, G. The effects of extruded black rice flour on rheological and structural properties of wheat-based dough and bread quality. Int. J. Food Sci. Technol. 2019, 54, 1729–1740. [Google Scholar] [CrossRef]
- de la Hera, E.; Rosell, C.M.; Gomez, M. Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chem. 2014, 151, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Wang, L.; Li, Y.; Qian, H.; Liu, L.; Tong, L.; Zhou, X.; Wang, L.; Zhou, S. Effect of milling methods on the properties of rice flour and gluten-free rice bread. LWT 2019, 108, 137–144. [Google Scholar] [CrossRef]
- Pedrosa Silva Clerici, M.T.; Airoldi, C.; El-Dash, A.A. Production of acidic extruded rice flour and its influence on the qualities of gluten-free bread. LWT-Food Sci. Technol. 2009, 42, 618–623. [Google Scholar] [CrossRef]
- Sánchez, H.; Gonzalez, R.; Osella, C.; Torres, R.; Torre, M. Elaboration of bread without gluten from extruded rice flour. Cienc. Tecnol. Aliment. 2008, 6, 109–116. [Google Scholar] [CrossRef]
- Himashree, P.; Sengar, A.S.; Sunil, C.K. Food thickening agents: Sources, chemistry, properties and applications—A review. Int. J. Gastron. Food Sci. 2022, 27, 100468. [Google Scholar] [CrossRef]
- Jan, S.; Jan, K.; Saxena, D. Flow property measurement of rice flour- A Review. MATEC Web Conf. 2016, 57, 04004. [Google Scholar] [CrossRef] [Green Version]
- Araki, E.; Ashida, K.; Aoki, N.; Takahashi, M.; Hamada, S. Characteristics of Rice Flour Suitable for the Production of Rice Flour Bread Containing Gluten and Methods of Reducing the Cost of Producing Rice Flour. Jpn. Agric. Res. Q. JARQ 2016, 50, 23–31. [Google Scholar] [CrossRef] [Green Version]
- ISO 20483:2013; International Organization for Standardization. Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method. ISO: Geneva, Switzerland, 2013.
- AACC. Ash in Farina and Semolina. AACC Int. Approv. Methods 2009. [Google Scholar] [CrossRef]
- Makowska, A.; Szwengiel, A.; Kubiak, P.; Tomaszewska-Gras, J. Characteristics and structure of starch isolated from triticale. Starch-Stärke 2014, 66, 895–902. [Google Scholar] [CrossRef]
- Jeżowski, P.; Polcyn, K.; Tomkowiak, A.; Rybicka, I.; Radzikowska, D. Technological and antioxidant properties of proteins obtained from waste potato juice. Open Life Sci. 2020, 15, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.; Walkowiak, K.; Masewicz, Ł.; Bartczak, O.; Lewandowicz, J.; Kubiak, P.; Baranowska, H. Gluten-Free Bread with Cricket Powder—Mechanical Properties and Molecular Water Dynamics in Dough and Ready Product. Foods 2019, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- AACC. AACCI 10-05.01 Guidelines for Measurement of Volume by Rapeseed Displacement. In AACC International Approved Methods; AACC International: Washington, DC, USA, 2009. [Google Scholar]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Smarzyński, K.; Thanh-Blicharz, J.L.; Kačániová, M.; Baranowska, H.M. LF NMR spectroscopy analysis of water dynamics and texture of gluten-free bread with cricket powder during storage. Food Sci. Technol. Int. 2021, 27, 776–785. [Google Scholar] [CrossRef]
- Cichocki, W.; Czerniak, A.; Smarzyński, K.; Jeżowski, P.; Kmiecik, D.; Baranowska, H.M.; Walkowiak, K.; Ostrowska-Ligęza, E.; Różańska, M.B.; Lesiecki, M.; et al. Physicochemical and Morphological Study of the Saccharomyces cerevisiae Cell-Based Microcapsules with Novel Cold-Pressed Oil Blends. Appl. Sci. 2022, 12, 6577. [Google Scholar] [CrossRef]
- Brosio, E.; Gianferri, R.R. An analytical tool in foods characterization and traceability. In Basic NMR in Foods Characterization; Research Signpost: Kerala, India, 2009; pp. 9–37. [Google Scholar]
- Baranowska, H.M. Water molecular properties in forcemeats and finely ground sausages containing plant fat. Food Biophys. 2011, 6, 133–137. [Google Scholar] [CrossRef]
- Małyszek, Z.; Lewandowicz, J.; Le Thanh-Blicharz, J.; Walkowiak, K.; Kowalczewski, P.Ł.; Baranowska, H.M. Water Behavior of Emulsions Stabilized by Modified Potato Starch. Polymers 2021, 13, 2200. [Google Scholar] [CrossRef]
- Kim, J.-M.; Shin, M. Effects of particle size distributions of rice flour on the quality of gluten-free rice cupcakes. LWT-Food Sci. Technol. 2014, 59, 526–532. [Google Scholar] [CrossRef]
- Wang, B.; Dong, Y.; Fang, Y.; Gao, W.; Kang, X.; Liu, P.; Yan, S.; Cui, B.; Abd El-Aty, A.M. Effects of different moisture contents on the structure and properties of corn starch during extrusion. Food Chem. 2022, 368, 130804. [Google Scholar] [CrossRef] [PubMed]
- Moraru, C.I.; Kokini, J.L. Nucleation and Expansion During Extrusion and Microwave Heating of Cereal Foods. Compr. Rev. Food Sci. Food Saf. 2003, 2, 147–165. [Google Scholar] [CrossRef]
- Wang, B.; Yu, B.; Yuan, C.; Guo, L.; Liu, P.; Gao, W.; Li, D.; Cui, B.; Abd El-Aty, A.M. An overview on plasticized biodegradable corn starch-based films: The physicochemical properties and gelatinization process. Crit. Rev. Food Sci. Nutr. 2022, 62, 2569–2579. [Google Scholar] [CrossRef]
- Hossen, M.S.; Sotome, I.; Takenaka, M.; Isobe, S.; Nakajima, M.; Okadome, H. Effect of Particle Size of Different Crop Starches and Their Flours on Pasting Properties. Jpn. J. Food Eng. 2011, 12, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Makowska, A.; Kubiak, P.; Bialas, W.; Lewandowicz, G. Effect of urea, sodium nitrate and ethylene glycol addition on the rheological properties of corn starch pastes. Polimery 2015, 60, 343–350. [Google Scholar] [CrossRef]
- Chiang, B.Y.; Johnson, J.A. Gelatinization of starch in extruded products. Cereal Chem. 1977, 54, 436–443. [Google Scholar]
- Haase, N.U.; Mintus, T.; Weipert, D. Viscosity Measurements of Potato Starch Paste with the Rapid Visco Analyzer. Starch-Stärke 1995, 47, 123–126. [Google Scholar] [CrossRef]
- Leonel, M.; de Freitas, T.S.; Mischan, M.M. Physical characteristics of extruded cassava starch. Sci. Agric. 2009, 66, 486–493. [Google Scholar] [CrossRef]
- Fu, L.; Tian, J.; Sun, C.; Li, C. RVA and Farinograph Properties Study on Blends of Resistant Starch and Wheat Flour. Agric. Sci. China 2008, 7, 812–822. [Google Scholar] [CrossRef]
- Doublier, J.L.; Colonna, P.; Mercier, C. Extrusion cooking and drum drying of wheat starch. II. Rheological characterization of starch pastes. Cereal Chem. 1986, 63, 240–246. [Google Scholar]
- Mercier, C.; Feillet, P. Modification of carbohydrate components by extrusion-cooking of cereal products; modification des constituants glucidiques par cuisson-extrusion des produits cerealiers. Cereal Chem. 1975, 52, 283–297. [Google Scholar]
- Shahzad, S.A.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Ibraheem, M.A.; Qasem, A.A.A. Effect of Hydrocolloid Gums on the Pasting, Thermal, Rheological and Textural Properties of Chickpea Starch. Foods 2019, 8, 687. [Google Scholar] [CrossRef] [Green Version]
- Barak, S.; Mudgil, D.; Khatkar, B.S. Effect of flour particle size and damaged starch on the quality of cookies. J. Food Sci. Technol. 2014, 51, 1342–1348. [Google Scholar] [CrossRef] [Green Version]
- Kadan, R.S.; Bryant, R.J.; Pepperman, A.B. Functional Properties of Extruded Rice Flours. J. Food Sci. 2003, 68, 1669–1672. [Google Scholar] [CrossRef]
- Purhagen, J.K.; Sjöö, M.E.; Eliasson, A.-C. The anti-staling effect of pre-gelatinized flour and emulsifier in gluten-free bread. Eur. Food Res. Technol. 2012, 235, 265–276. [Google Scholar] [CrossRef]
- Tabara, A.; Nakagawa, M.; Ushijima, Y.; Matsunaga, K.; Seguchi, M. Effects of heat treatment on oil-binding ability of rice flour. Biosci. Biotechnol. Biochem. 2015, 79, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Lewandowicz, J.; Baranowska, H.M.; Le Thanh-Blicharz, J.; Makowska, A. Water binding capacity in waxy and normal rice starch pastes. In Proceedings of the 11th International Conference on Polysaccharides-Glycoscience, Prague, Czech Republic, 7–9 October 2015; Řápková, R., Čopíková, J., Šárka, E., Eds.; 2015; pp. 69–72. [Google Scholar]
- Łopusiewicz, Ł.; Kowalczewski, P.Ł.; Baranowska, H.M.; Masewicz, Ł.; Amarowicz, R.; Krupa-Kozak, U. Effect of Flaxseed Oil Cake Extract on the Microbial Quality, Texture and Shelf Life of Gluten-Free Bread. Foods 2023, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Smarzyński, K.; Sarbak, P.; Kowalczewski, P.Ł.; Różańska, M.B.; Rybicka, I.; Polanowska, K.; Fedko, M.; Kmiecik, D.; Masewicz, Ł.; Nowicki, M.; et al. Low-Field NMR Study of Shortcake Biscuits with Cricket Powder, and Their Nutritional and Physical Characteristics. Molecules 2021, 26, 5417. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.Ł.; Siejak, P.; Jarzębski, M.; Jakubowicz, J.; Jeżowski, P.; Walkowiak, K.; Smarzyński, K.; Ostrowska-Ligęza, E.; Baranowska, H.M. Comparison of technological and physicochemical properties of cricket powders of different origin. J. Insects Food Feed. 2022, 1–10. [Google Scholar] [CrossRef]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef] [Green Version]
- Stangierski, J.; Baranowska, H.M. The Influence of Heating and Cooling Process on the Water Binding in Transglutaminase-Modified Chicken Protein Preparation, Assessed Using Low-Field NMR. Food Bioprocess Technol. 2015, 8, 2359–2367. [Google Scholar] [CrossRef] [Green Version]
- Masewicz, L.; Lewandowicz, J.; Le Thanh-Blicharz, J.; Kempka, M.; Baranowska, H.M. Diffusion of Water in Potato Starch Pastes. In Proceedings of the 12th International Conference on Polysaccharides-Glycoscience, Prague, Czech Republic, 19–21 October 2016; pp. 193–195. [Google Scholar]
- Biliaderis, C.G.; Page, C.M.; Maurice, T.J.; Juliano, B.O. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 1986, 34, 6–14. [Google Scholar] [CrossRef]
- Onyango, C.; Mutungi, C.; Unbehend, G.; Lindhauer, M.G. Modification of gluten-free sorghum batter and bread using maize, potato, cassava or rice starch. LWT-Food Sci. Technol. 2011, 44, 681–686. [Google Scholar] [CrossRef]
- Pedrosa Silva Clerici, M.T.; El-Dash, A.A. Farinha extrusada de arroz como substituto de glúten na produção de pão de arroz. Arch. Latinoam. Nutr. 2006, 56, 288–298. [Google Scholar]
- Araki, E.; Ikeda, T.M.; Ashida, K.; Takata, K.; Yanaka, M.; Iida, S. Effects of Rice Flour Properties on Specific Loaf Volume of One-loaf Bread Made from Rice Flour with Wheat Vital Gluten. Food Sci. Technol. Res. 2009, 15, 439–448. [Google Scholar] [CrossRef] [Green Version]
- de la Hera, E.; Talegón, M.; Caballero, P.; Gómez, M. Influence of maize flour particle size on gluten-free breadmaking. J. Sci. Food Agric. 2013, 93, 924–932. [Google Scholar] [CrossRef]
- Sabanis, D.; Lebesi, D.; Tzia, C. Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT-Food Sci. Technol. 2009, 42, 1380–1389. [Google Scholar] [CrossRef]
Sample | Protein (%) | Ash (%) |
---|---|---|
<132 μm | ||
C, <132 μm | 9.10 ± 0.18 A,a | 0.613 ± 0.014 A,a |
15%, 80 °C | 8.52 ± 0.23 B,b | 0.543 ± 0.043 B,b |
30%, 80 °C | 8.54 ± 0.06 B,b | 0.467 ± 0.008 C,cd |
15%, 120 °C | 8.09 ± 0.06 C,c | 0.528 ± 0.018 B,b |
30%, 120 °C | 8.35 ± 0.01 BC,bc | 0.464 ± 0.009 C,cd |
>132–200 μm | ||
C, >132 μm | 8.46 ± 0.01 C,b | 0.463 ± 0.009 BC,cd |
15%, 80 °C | 9.07 ± 0.04 A,a | 0.512 ± 0.002 A,bc |
30%, 80 °C | 8.63 ± 0.09 B,b | 0.468 ± 0.01 BC,cd |
15%, 120 °C | 9.10 ± 0.09 A,a | 0.491 ± 0.034 AB,bc |
30%, 120 °C | 9.16 ± 0.03 A,a | 0.437 ± 0.015 C,d |
Sample | Peak Viscosity (cP) | Trough (cP) | Breakdown (cP) | Final Viscosity (cP) | Setback (cP) |
---|---|---|---|---|---|
<132 μm | |||||
C, <132 μm | 3667 ± 144 A,a | 2099 ± 63 A,b | 1568 ± 116 A,a | 4949 ± 111 A,a | 2850 ± 56 A,a |
15%, 80 °C | 499 ± 149 C,c | 308 ± 47 C,d | 241 ± 52 C,ef | 491 ± 106 D,d | 183 ± 58 D,f |
30%, 80 °C | 1170 ± 13 B,b | 606 ± 27 B,c | 565 ± 36 B,c | 1413 ± 28 B,b | 807 ± 16 B,c |
15%, 120 °C | 355 ± 57 C,c | 248 ± 25 C,d | 122 ± 19 C,f | 363 ± 66 D,d | 115 ± 42 D,f |
30%, 120 °C | 1059 ± 3 B,b | 619 ± 3 B,c | 441 ± 2 B,cd | 1126 ± 12 C,c | 507 ± 11 C,e |
>132–200 μm | |||||
C, >132 μm | 3585 ± 93 A,a | 2642 ± 191 A,a | 943 ± 111 A,b | 4861 ± 106 A,a | 2219 ± 86 A,b |
15%, 80 °C | 496 ± 27 C,c | 295 ± 8 C,d | 201 ± 20 C,ef | 463 ± 21 C,d | 168 ± 12 D,f |
30%, 80 °C | 1065 ± 20 B,b | 579 ± 12 B,c | 486 ± 19 B,cd | 1377 ± 25 B,b | 797 ± 17 B,c |
15%, 120 °C | 463 ± 69 C,c | 285 ± 37 C,d | 178 ± 38 C,f | 466 ± 73 C,d | 181 ± 37 D,f |
30%, 120 °C | 1023 ± 26 B,b | 671 ± 14 B,c | 351 ± 17 B,de | 1307 ± 23 B,bc | 635 ± 9 C,d |
Sample | WBC (g/g) | OAC (g/g) |
---|---|---|
<132 μm | ||
C, <132 μm | 1.69 ± 0.08 C,e | 1.46 ± 0.06 AB,ab |
15%, 80 °C | 4.56 ± 0.35 AB,cd | 1.38 ± 0.06 B,ab |
30%, 80 °C | 3.99 ± 0.11 B,d | 1.56 ± 0.13 AB,a |
15%, 120 °C | 4.94 ± 0.36 A,c | 1.60 ± 0.08 A,a |
30%, 120 °C | 4.61 ± 0.49 AB,cd | 1.49 ± 0.02 AB,ab |
>132–200 μm | ||
C, >132 μm | 1.41 ± 0.05 C,e | 1.39 ± 0.06 AB,ab |
15%, 80 °C | 5.37 ± 0.22 AB,abc | 1.48 ± 0.06 AB,ab |
30%, 80 °C | 5.10 ± 0.18 B,bc | 1.40 ± 0.07 AB,ab |
15%, 120 °C | 6.19 ± 0.63 A,a | 1.52 ± 0.13 A,a |
30%, 120 °C | 5.89 ± 1.09 AB,ab | 1.26 ± 0.12 B,b |
Sample | K* ( ) | n* (-) | R2 | K’ ( ) | n’ (-) | R2 | K″ ( ) | n″ (-) | R2 |
---|---|---|---|---|---|---|---|---|---|
<132 μm | |||||||||
C, <132 μm | 6.6 ± 0.2 B,c | 0.858 ± 0.015 A,ab | 1.000 | 38.6 ± 1.7 B,c | 0.156 ± 0.026 B,b | 0.963 | 6.1 ± 0.3 B,c | 0.255 ± 0.011 C,c | 0.972 |
15%, 80 °C | 5.8 ± 0.1 B,c | 0.762 ± 0.030 B,ab | 1.000 | 33.2 ± 0.8 B,c | 0.260 ± 0.001 A,a | 0.996 | 11.3 ± 0.3 AB,bc | 0.359 ± 0.007 A,a | 0.998 |
30%, 80 °C | 16.8 ± 0.1 A,b | 0.873 ± 0.003 A,ab | 1.000 | 102.1 ± 0.4 A,b | 0.130 ± 0.005 B,b | 0.996 | 15.8 ± 0.2 A,b | 0.297 ± 0.002 B,b | 0.996 |
15%, 120 °C | 6.3 ± 0.6 B,c | 0.749 ± 0.010 B,b | 0.998 | 36.5 ± 0.3 B,c | 0.256 ± 0.015 A,a | 0.997 | 12.1 ± 0.1 AB,bc | 0.349 ± 0.009 A,a | 0.996 |
30%, 120 °C | 15.6 ± 0.1 A,b | 0.872 ± 0.001 A,ab | 1.000 | 95.4 ± 0.7 A,b | 0.144 ± 0.012 B,b | 0.993 | 16.4 ± 0.1 A,b | 0.290 ± 0.002 B,bc | 0.996 |
>132–200 μm | |||||||||
C, >132 μm | 84.0 ± 3.7 A,a | 0.851 ± 0.038 A,ab | 1.000 | 494.4 ± 20.3 A,a | 0.129 ± 0.002 B,b | 0.998 | 98.5 ± 4.3 A,a | 0.127 ± 0.025 B,d | 0.962 |
15%, 80 °C | 5.7 ± 0.1 C,c | 0.764 ± 0.071 A,ab | 1.000 | 32.1 ± 0.3 C,c | 0.281 ± 0.002 A,a | 0.992 | 11.4 ± 0.1 B,bc | 0.358 ± 0.006 A,a | 0.998 |
30%, 80 °C | 19.6 ± 0.1 B,b | 0.875 ± 0.010 A,a | 1.000 | 118.3 ± 0.7 B,b | 0.130 ± 0.003 B,b | 0.990 | 17.2 ± 0.2 B,b | 0.276 ± 0.001 B,bc | 0.990 |
15%, 120 °C | 7.3 ± 0.1 C,c | 0.759 ± 0.042 A,ab | 1.000 | 41.7 ± 0.8 C,c | 0.265 ± 0.008 A,a | 0.996 | 14.7 ± 0.3 B,bc | 0.355 ± 0.001 A,a | 0.998 |
30%, 120 °C | 20.3 ± 0.1 B,b | 0.873 ± 0.013 A,ab | 1.000 | 123.0 ± 0.7 B,b | 0.126 ± 0.007 B,b | 0.995 | 18.0 ± 0.1 B,b | 0.274 ± 0.013 B,bc | 0.993 |
Factor | p-value | ||||||||
Fraction | 0.005 | 0.821 | 0.005 | 0.475 | 0.167 | 0.032 | |||
Temperature | 0.483 | 0.730 | 0.407 | 0.533 | 0.178 | 0.127 | |||
Moisture | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | |||
Fraction×Temperature | 0.215 | 0.913 | 0.191 | 0.105 | 0.497 | 0.369 | |||
Fraction×Moisture | 0.017 | 0.883 | 0.013 | 0.017 | 0.924 | 0.011 | |||
Temperature×Moisture | 0.271 | 0.806 | 0.265 | 0.095 | 0.498 | 0.706 | |||
Fraction×Temperature×Moisture | 0.732 | 0.887 | 0.686 | 0.711 | 0.575 | 0.844 |
Sample | T1 (ms) | T21 (ms) | T22 (ms) | (τc)U | (τc)D |
---|---|---|---|---|---|
<132 μm | |||||
C, <132 μm | 102.8 ± 0.5 D,e | 2.7 ± 0.2 A,c | 10.9 ± 0.2 D,f | 5.78 × 10−8 | 2.59 × 10−8 |
15%, 80 °C | 109.5 ± 0.4 A,a | 0.42 ± 0.06 D,g | 16.5 ± 0.4 B,b | 1.56 × 10−7 | 2.04 × 10−8 |
30%, 80 °C | 108.1 ± 0.3 A,b | 0.48 ± 0.05 D,g | 16.4 ± 0.4 BC,b | 1.45 × 10−7 | 2.03 × 10−8 |
15%, 120 °C | 106.1 ± 0.8 B,c | 0.81 ± 0.09 B,e | 18.1 ± 0.6 A,a | 1.10 × 10−7 | 1.87 × 10−8 |
30%, 120 °C | 105.1 ± 0.6 C,d | 0.65 ± 0.10 C,f | 16.2 ± 0.5 C,b | 1.22 × 10−7 | 2.01 × 10−8 |
>132–200 μm | |||||
C, >132 μm | 84.4 ± 1.1 D,f | 0.39 ± 0.06 D,g | 14.7 ± 0.5 A,c | 1.42 × 10−7 | 1.84 × 10−8 |
15%, 80 °C | 106.8 ± 0.5 B,c | 3.0 ± 0.2 B,b | 10.8 ± 0.3 D,f | 5.58 × 10−8 | 2.67 × 10−8 |
30%, 80 °C | 107.2 ± 0.4 A,bc | 2.54 ± 0.06 C,d | 12.6 ± 0.4 B,d | 1.36 × 10−7 | 2.01 × 10−8 |
15%, 120 °C | 106.2 ± 0.5 C,c | 2.6 ± 0.2 C,cd | 12.0 ± 0.3 C,e | 6.00 × 10−8 | 2.48 × 10−8 |
30%, 120 °C | 106.3 ± 0.4 C,c | 3.4 ± 0.2 A,a | 12.1 ± 0.3 C,e | 5.20 × 10−8 | 2.47 × 10−8 |
Sample | Hardness (N) | Springiness (%) | Cohesiveness (−) | Chewiness (−) | Resilience (−) | Specific Volume (mL/100 g) |
---|---|---|---|---|---|---|
<132 μm | ||||||
C, <132 μm | 85.1 ± 9.9 C,d | 0.847 ± 0.005 A,a | 0.425 ± 0.016 A,a | 3128 ± 488 B,c | 0.197 ± 0.008 A,a | 201 ± 14 A,a |
15%, 80 °C | 166.6 ± 9.7 A,a | 0.870 ± 0.065 A,a | 0.467 ± 0.043 A,a | 6918 ± 1072 A,a | 0.246 ± 0.006 A,a | 127 ± 6 B,d |
30%, 80 °C | 94.0 ± 4.2 C,cd | 0.782 ± 0.034 A,a | 0.378 ± 0.020 A,a | 2835 ± 241 B,c | 0.195 ± 0.009 A,a | 140 ± 1 B,cd |
15%, 120 °C | 124.5 ± 10.8 B,b | 0.854 ± 0.024 A,a | 0.407 ± 0.050 A,a | 4431 ± 858 AB,abc | 0.216 ± 0.031 A,a | 137 ± 3 B,cd |
30%, 120 °C | 105.8 ± 14.3 BC,bcd | 0.801 ± 0.100 A,a | 0.456 ± 0.120 A,a | 4019 ± 1554 B,bc | 0.246 ± 0.074 A,a | 137 ± 4 B,cd |
>132–200 μm | ||||||
C, >132 μm | 116.6 ± 2.8 B,bc | 0.796 ± 0.0437 A,a | 0.356 ± 0.045 B,a | 3361 ± 497 B,c | 0.186 ± 0.024 A,a | 153 ± 2 B,bc |
15%, 80 °C | 153.5 ± 0.8 A,a | 0.912 ± 0.098 A,a | 0.443 ± 0.062 AB,a | 6358 ± 1421 A,ab | 0.226 ± 0.017 A,a | 167 ± 4 A,b |
30%, 80 °C | 116.9 ± 9.1 B,bc | 0.864 ± 0.038 A,a | 0.382 ± 0.054 AB,a | 3920 ± 576 B,c | 0.194 ± 0.031 A,a | 131 ± 6 C,d |
15%, 120 °C | 155.0 ± 3.5 A,a | 0.835 ± 0.033 A,a | 0.488 ± 0.034 A,a | 6436 ± 431 A,ab | 0.243 ± 0.021 A,a | 128 ± 3 C,d |
30%, 120 °C | 107.6 ± 13.6 B,bcd | 0.790 ± 0.072 A,a | 0.39 ± 0.034 AB,a | 3374 ± 516 B,c | 0.197 ± 0.019 A,a | 135 ± 5 C,d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różańska, M.B.; Kokolus, P.; Królak, J.; Jankowska, P.; Osoś, A.; Romanowska, M.; Szala, Ł.; Kowalczewski, P.Ł.; Lewandowicz, J.; Masewicz, Ł.; et al. Insight into the Gluten-Free Dough and Bread Properties Obtained from Extruded Rice Flour: Physicochemical, Mechanical, and Molecular Studies. Appl. Sci. 2023, 13, 4033. https://doi.org/10.3390/app13064033
Różańska MB, Kokolus P, Królak J, Jankowska P, Osoś A, Romanowska M, Szala Ł, Kowalczewski PŁ, Lewandowicz J, Masewicz Ł, et al. Insight into the Gluten-Free Dough and Bread Properties Obtained from Extruded Rice Flour: Physicochemical, Mechanical, and Molecular Studies. Applied Sciences. 2023; 13(6):4033. https://doi.org/10.3390/app13064033
Chicago/Turabian StyleRóżańska, Maria Barbara, Patrycja Kokolus, Jakub Królak, Patrycja Jankowska, Agata Osoś, Magda Romanowska, Łukasz Szala, Przemysław Łukasz Kowalczewski, Jacek Lewandowicz, Łukasz Masewicz, and et al. 2023. "Insight into the Gluten-Free Dough and Bread Properties Obtained from Extruded Rice Flour: Physicochemical, Mechanical, and Molecular Studies" Applied Sciences 13, no. 6: 4033. https://doi.org/10.3390/app13064033
APA StyleRóżańska, M. B., Kokolus, P., Królak, J., Jankowska, P., Osoś, A., Romanowska, M., Szala, Ł., Kowalczewski, P. Ł., Lewandowicz, J., Masewicz, Ł., Baranowska, H. M., & Mildner-Szkudlarz, S. (2023). Insight into the Gluten-Free Dough and Bread Properties Obtained from Extruded Rice Flour: Physicochemical, Mechanical, and Molecular Studies. Applied Sciences, 13(6), 4033. https://doi.org/10.3390/app13064033