Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Sample Description
2.2. Setup and Instrumentation
2.3. Measurement and Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IRT | Infrared thermograpy |
PT | Pulse thermography |
LIT | Lock-in thermography |
PCT | Principal component thermography |
PLST | Partial least squares thermography |
PPT | Pulse phase thermography |
DAC | Differential Absolute Contrast |
TSR | Thermal signal reconstruction |
MWIR | Mid-wave infrared |
LWIR | Long-wave infrared |
MA-rFTIR | Macroscopic Fourier transform infrared scanning in reflection mode |
NETD | Noise equivalent temperature difference |
AFOV | angular field of view |
Appendix A
References
- Mercuri, F.; Orazi, N.; Paoloni, S.; Cicero, C.; Zammit, U. Pulsed thermography applied to the study of cultural heritage. Appl. Sci. 2017, 7, 1010. [Google Scholar] [CrossRef] [Green Version]
- Laureti, S.; Sfarra, S.; Malekmohammadi, H.; Burrascano, P.; Hutchins, D.A.; Senni, L.; Silipigni, G.; Maldague, X.P.; Ricci, M. The use of pulse-compression thermography for detecting defects in paintings. NDT E Int. 2018, 98, 147–154. [Google Scholar] [CrossRef] [Green Version]
- van der Snickt, G.; Dooley, K.A.; Sanyova, J.; Dubois, H.; Delaney, J.K.; Melanie Gifford, E.; Legrand, S.; Laquiere, N.; Janssens, K. Dual mode standoff imaging spectroscopy documents the painting process of the Lamb of God in the Ghent Altarpiece by J. And H. Van Eyck. Sci. Adv. 2020, 6, eabb3379. [Google Scholar] [CrossRef]
- Rippa, M.; Pagliarulo, V.; Lanzillo, A.; Grilli, M.; Fatigati, G.; Rossi, P.; Cennamo, P.; Trojsi, G.; Ferraro, P.; Mormile, P. Active Thermography for Non-invasive Inspection of an Artwork on Poplar Panel: Novel Approach Using Principal Component Thermography and Absolute Thermal Contrast. J. Nondestruct. Eval. 2021, 40, 21. [Google Scholar] [CrossRef]
- Gavrilov, D.; Maeva, E.; Grube, O.; Vodyanoy, I.; Maev, R. Experimental comparative study of the applicability of infrared techniques for non-destructive evaluation of paintings. J. Am. Inst. Conserv. 2013, 52, 48–60. [Google Scholar] [CrossRef]
- Paoloni, S.; Mercuri, F.; Orazi, N.; Caruso, G.; Zammit, U. Photothermal approach for cultural heritage research. J. Appl. Phys. 2020, 128, 180904. [Google Scholar] [CrossRef]
- Peeters, J.; Van der Snickt, G.; Sfarra, S.; Legrand, S.; Ibarra-Castanedo, C.; Janssens, K.; Steenackers, G. IR reflectography and active thermography on artworks: The added value of the 1.5–3 μm band. Appl. Sci. 2018, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sfarra, S.; Saluja, K.; Peeters, J.; Fleuret, J.; Duan, Y.; Fernandes, H.; Avdelidis, N.; Ibarra-Castanedo, C.; Maldague, X. Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography. J. Nondestruct. Eval. 2017, 36, 34. [Google Scholar] [CrossRef] [Green Version]
- Maev, R.G.; Gavrilov, D. Thermography in Analysis of Works of Art: Choice of the Optimal Approach. In Proceedings of the 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), Le Mans, France, 20–24 May 2013; Available online: https://www.ndt.net/?id=15545 (accessed on 14 February 2023).
- Ambrosini, D.; Daffara, C.; Di Biase, R.; Paoletti, D.; Pezzati, L.; Bellucci, R.; Bettini, F. Integrated reflectography and thermography for wooden paintings diagnostics. J. Cult. Herit. 2010, 11, 196–204. [Google Scholar] [CrossRef]
- Mouhoubi, K.; Detalle, V.; Vallet, J.M. Improvement of the Non-Destructive Testing of Heritage Mural Paintings Using Stimulated Infrared Thermography and Frequency Image Processing. J. Imaging 2019, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Blessley, K.; Young, C.; Nunn, J.; Coddington, J.; Shepard, S. The feasibility of flash thermography for the examination and conservation of works of Art. Stud. Conserv. 2010, 55, 107–120. [Google Scholar] [CrossRef]
- Daffara, C.; Parisotto, S.; Ambrosini, D. Multipurpose, dual-mode imaging in the 3–5 μm range ( MWIR ) for artwork diagnostics: A systematic approach. Opt. Lasers Eng. 2018, 104, 266–273. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Application of infrared thermography to adhesion science. J. Adhes. Sci. Technol. 2006, 20, 589–632. [Google Scholar] [CrossRef]
- Candoré, J.C.; Bodnar, J.L.; Detalle, V.; Grossel, P. Non-destructive testing of works of art by stimulated infrared thermography. EPJ Appl. Phys. 2012, 57, 21002. [Google Scholar] [CrossRef] [Green Version]
- Avdelidis, N.P.; Koui, M.; Ibarra-Castanedo, C.; Maldague, X. Thermographic studies of plastered mosaics. Infrared Phys. Technol. 2007, 49, 254–256. [Google Scholar] [CrossRef]
- Sfarra, S.; Regi, M. Wavelet analysis applied to thermographic data for the detection of sub-superficial flaws in mosaics. EPJ Appl. Phys. 2016, 74, 31001. [Google Scholar] [CrossRef]
- Fernandes, H.; Summa, J.; Daudre, J.; Rabe, U.; Fell, J.; Sfarra, S.; Gargiulo, G.; Herrmann, H.G. Characterization of ancient marquetry using different non-destructive testing techniques. Appl. Sci. 2021, 11, 7979. [Google Scholar] [CrossRef]
- Chulkov, A.O.; Sfarra, S.; Saeed, N.; Peeters, J.; Ibarra-Castanedo, C.; Gargiulo, G.; Steenackers, G.; Maldague, X.P.; Omar, M.A.; Vavilov, V. Evaluating quality of marquetries by applying active IR thermography and advanced signal processing. J. Therm. Anal. Calorim. 2021, 143, 3835–3848. [Google Scholar] [CrossRef]
- Mercuri, F.; Caruso, G.; Orazi, N.; Zammit, U.; Ceccarelli, S.; Cicero, C.; Vadrucci, M.; Paoloni, S. Depth-Resolved Analysis of Double-Layered Cultural Heritage Artifacts by Pulsed Thermography. Int. J. Thermophys. 2020, 41, 6. [Google Scholar] [CrossRef]
- Palomar, T.; Agua, F.; Gómez-Heras, M. Comparative assessment of stained-glass windows materials by infrared thermography. Int. J. Appl. Glas. Sci. 2018, 9, 530–539. [Google Scholar] [CrossRef]
- Hillen, M.; Legrand, S.; Dirkx, Y.; Janssens, K.; Van der Snickt, G.; Caen, J.; Steenackers, G. Cluster analysis of ir thermography data for differentiating glass types in historical leaded-glass windows. Appl. Sci. 2020, 10, 4255. [Google Scholar] [CrossRef]
- Gavrilov, D.; Maev, R.G.; Almond, D.P. A review of imaging methods in analysis of works of art: Thermographic imaging method in art analysis. Can. J. Phys. 2014, 92, 341–364. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Guarneri, M.; Orazi, N.; Francucci, M.; Ciaffi, M.; Mercuri, F.; Paoloni, S.; de Collibus, M.F.; Zammit, U.; Petrucci, F. Remote and contactless infrared imaging techniques for stratigraphical investigations in paintings on canvas. Appl. Phys. B Lasers Opt. 2021, 127, 106. [Google Scholar] [CrossRef]
- Sfarra, S.; Laureti, S.; Gargiulo, G.; Malekmohammadi, H.; Sangiovanni, M.A.; La Russa, M.; Burrascano, P.; Ricci, M. Low Thermal Conductivity Materials and Very Low Heat Power: A Demanding Challenge in the Detection of Flaws in Multi-Layer Wooden Cultural Heritage Objects Solved by Pulse-Compression Thermography Technique. Appl. Sci. 2020, 10, 4233. [Google Scholar] [CrossRef]
- Legrand, S.; Alfeld, M.; Vanmeert, F.; De Nolf, W.; Janssens, K. Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range. Analyst 2014, 139, 2489–2498. [Google Scholar] [CrossRef] [PubMed]
- Busse, G.; Wu, D.; Karpen, W. Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 1992, 71, 3962–3965. [Google Scholar] [CrossRef]
- Maldague, X.; Marinetti, S. Pulse phase infrared thermography. J. Appl. Phys. 1996, 79, 2694–2698. [Google Scholar] [CrossRef] [Green Version]
- Schlangen, R.; Deslandes, H.; Lundquist, T.; Schmidt, C.; Altmann, F.; Yu, K.; Andreasyan, A.; Li, S. Dynamic lock-in thermography for operation mode-dependent thermally active fault localization. Microelectron. Reliab. 2010, 50, 1454–1458. [Google Scholar] [CrossRef]
- Galmiche, F.; Leclerc, M.; Maldague, X.P. Time aliasing problem in pulsed- phased thermography. Thermosense XXIII 2001, 4360, 550–553. [Google Scholar] [CrossRef]
- Maldague, X.; Galmiche, F.; Ziadi, A. Advances in pulsed phase thermography. Infrared Phys. Technol. 2002, 43, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Castanedo, C.; Maldague, X. Pulsed phase thermography reviewed. Quant. Infrared Thermogr. J. 2004, 1, 47–70. [Google Scholar] [CrossRef]
- Pickering, S.G.; Chatterjee, K.; Almond, D.P.; Tuli, S. LED optical excitation for the long pulse and lock-in thermographic techniques. NDT E Int. 2013, 58, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Pickering, S.; Almond, D. Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques. NDT E Int. 2008, 41, 501–509. [Google Scholar] [CrossRef]
Name | Model | Spectral Range (µm) | NETD (mK) |
---|---|---|---|
A-MWIR _O | FLIR X6540sc | 2.5–5.0 | <25 |
B-MWIR _F | FLIR X6540sc | 4.1–5.0 | <25 |
C-LWIR | FLIR A655sc | 7.5–14.0 | <30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G. Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings. Appl. Sci. 2023, 13, 4094. https://doi.org/10.3390/app13074094
Hillen M, Sels S, Ribbens B, Verspeek S, Janssens K, Van der Snickt G, Steenackers G. Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings. Applied Sciences. 2023; 13(7):4094. https://doi.org/10.3390/app13074094
Chicago/Turabian StyleHillen, Michaël, Seppe Sels, Bart Ribbens, Simon Verspeek, Koen Janssens, Geert Van der Snickt, and Gunther Steenackers. 2023. "Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings" Applied Sciences 13, no. 7: 4094. https://doi.org/10.3390/app13074094
APA StyleHillen, M., Sels, S., Ribbens, B., Verspeek, S., Janssens, K., Van der Snickt, G., & Steenackers, G. (2023). Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings. Applied Sciences, 13(7), 4094. https://doi.org/10.3390/app13074094