Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Model Architecture
2.3. Data Augmentation
2.3.1. Augmentation Setting for Training Data
2.3.2. Augmentation Setting of Testing Data
- Original: this test set did not have any data augmentation.
- Real-life test set: double-axis small rotations along the frontal and sagittal axis (respectively X- and Z-axis). In particular: [[5, 5], [5, 2], [2, 5], [10, 10], [10, 5], [5, 10], [15, 15], [15, 10], [10, 15]], unit of measurement in degrees.
- Fully-rotated test set: fifty-six rotations between 0 and 360 degrees applied along the frontal, longitudinal, and sagittal axis (respectively, X-,Y-, and Z-axis) separately.
3. Evaluation of the Orientation Impact Model and HAR Performance
4. Results
4.1. Rotation Impact on the Baseline Model
4.2. Augmentation Approach
4.3. Holdout Data Results—External Validation
5. Discussion
Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
X-Axis | Y-Axis | Z-Axis | |
---|---|---|---|
Static (static) | 1.43 (1.58) | 7.14 (1.45) | 7.11 (4.19) |
Treadmill walking (walking) | 47.69 (18.02) | 5.01 (0.62) | 33.71 (28.74) |
Stairs ascent (stairs ascent) | 75.67 (41.21) | 18.34 (4.6) | 58.99 (56.78) |
Stairs descent (stairs descent) | 57.71 (32.85) | 20.32 (2.78) | 30.69 (16.24) |
Walking aids (walking) | 84.13 (16.58) | 8.9 (0.75) | 56.65 (39.47) |
Intermittent shuffling(walking) | 86.38 (19.42) | 9.09 (1.0) | 63.63 (46.32) |
Active wheelchair(wheelchair) | 49.33 (38.33) | 42.62 (25.06) | 32.41 (43.6) |
Test Set | Mdl | Original | Real-Life | Fully-Rotated | |
---|---|---|---|---|---|
f1-Score | WPS | Base. | 0.96 (0.01) | 0.80 (0.15) | 0.78 (0.38) |
Holdout | Aug. | 0.96 (0.02) | 0.92 (0.03) | 0.92 (0.03) | |
SHS | Base. | 0.92 (0.08) | 0.84 (0.09) | 0.77 (0.24) | |
Aug. | 0.92 (0.07) | 0.87 (0.03) | 0.88 (0.03) | ||
Kappa-score | WPS | Base. | 0.93 (0.01) | 0.80 (0.20) | 0.66 (0.51) |
Holdout | Aug. | 0.92 (0.02) | 0.87 (0.04) | 0.88 (0.05) | |
SHS | Base. | 0.85 (0.13) | 0.72 (0.12) | 0.61 (0.35) | |
Aug. | 0.85 (0.11) | 0.77 (0.04) | 0.78 (0.05) |
Appendix A.1. Original Test Set Results for Individual Classes
Mdl | Metric | Stairs Ascent | Stairs Descent | Static | Walking | Wheelchair |
---|---|---|---|---|---|---|
Base. | precision | 0.89 ± 0.03 | 0.99 ± 0.01 | 0.98 ± 0.01 | 0.97 ± 0.01 | 0.70 ± 0.13 |
recall | 0.88 ± 0.02 | 0.86 ± 0.06 | 0.96 ± 0.03 | 0.97 ± 0.02 | 0.93 ± 0.06 | |
f1-score | 0.89 ± 0.02 | 0.92 ± 0.04 | 0.97 ± 0.01 | 0.97 ± 0.01 | 0.79 ± 0.1 | |
specificity | 0.99 ± 0.0 | 1.00 ± 0.0 | 0.99 ± 0.0 | 0.95 ± 0.02 | 0.99 ± 0.01 | |
Aug. | precision | 0.88 ± 0.09 | 0.94 ± 0.05 | 0.9 ± 0.07 | 0.97 ± 0.01 | 0.41 ± 0.23 |
recall | 0.89 ± 0.09 | 0.88 ± 0.12 | 0.94 ± 0.04 | 0.89 ± 0.09 | 0.92 ± 0.12 | |
f1-score | 0.88 ± 0.06 | 0.90 ± 0.08 | 0.92 ± 0.03 | 0.92 ± 0.05 | 0.53 ± 0.23 | |
specificity | 1.00 ± 0.0 | 1.00 ± 0.0 | 0.99 ± 0.0 | 0.93 ± 0.02 | 0.98 ± 0.01 |
Mdl | Metric | Stairs Ascent | Stairs Descent | Static | Walking | Wheelchair |
---|---|---|---|---|---|---|
Base. | precision | 0.83 ± 0.09 | 0.94 ± 0.05 | 0.92 ± 0.06 | 0.97 ± 0.01 | 0.39 ± 0.21 |
recall | 0.92 ± 0.07 | 0.88 ± 0.12 | 0.92 ± 0.04 | 0.89 ± 0.09 | 0.91 ± 0.15 | |
f1-score | 0.87 ± 0.06 | 0.90 ± 0.07 | 0.92 ± 0.03 | 0.92 ± 0.05 | 0.51 ± 0.23 | |
specificity | 0.99 ± 0.01 | 1.0 ± 0.0 | 0.97 ± 0.02 | 0.94 ± 0.02 | 0.95 ± 0.06 | |
Aug. | precision | 0.88 ± 0.09 | 0.94 ± 0.05 | 0.90 ± 0.07 | 0.97 ± 0.01 | 0.41 ± 0.23 |
recall | 0.89 ± 0.09 | 0.88 ± 0.12 | 0.94 ± 0.04 | 0.89 ± 0.09 | 0.92 ± 0.12 | |
f1-score | 0.88 ± 0.06 | 0.90 ± 0.08 | 0.92 ± 0.03 | 0.92 ± 0.05 | 0.53 ± 0.23 | |
specificity | 1.0 ± 0.01 | 1.0 ± 0.0 | 0.96 ± 0.03 | 0.94 ± 0.03 | 0.95 ± 0.06 |
Appendix A.2. Real-Life Test Set Results for Individual Classes
Mdl | Metric | Stairs Ascent | Stairs Descent | Static | Walking | Wheelchair |
---|---|---|---|---|---|---|
Base. | precision | 0.88 ± 0.02 | 0.98 ± 0.01 | 0.97 ± 0.01 | 0.96 ± 0.01 | 0.23 ± 0.12 |
recall | 0.87 ± 0.03 | 0.84 ± 0.03 | 0.96 ± 0.0 | 0.79 ± 0.12 | 0.88 ± 0.03 | |
f1-score | 0.87 ± 0.02 | 0.9 ± 0.02 | 0.97 ± 0.0 | 0.86 ± 0.08 | 0.35 ± 0.15 | |
specificity | 0.99 ± 0.0 | 1.0 ± 0.0 | 0.99 ± 0.0 | 0.95 ± 0.0 | 0.88 ± 0.08 | |
Aug. | precision | 0.94 ± 0.0 | 0.99 ± 0.0 | 0.98 ± 0.0 | 0.95 ± 0.0 | 0.41 ± 0.09 |
recall | 0.81 ± 0.01 | 0.83 ± 0.01 | 0.98 ± 0.0 | 0.92 ± 0.03 | 0.93 ± 0.0 | |
f1-score | 0.87 ± 0.01 | 0.90 ± 0.01 | 0.98 ± 0.0 | 0.94 ± 0.02 | 0.56 ± 0.09 | |
specificity | 1.0 ± 0.0 | 1.0 ± 0.0 | 0.99 ± 0.0 | 0.93 ± 0.0 | 0.96 ± 0.02 |
Mdl | Metric | Stairs Ascent | Stairs Descent | Static | Walking | Wheelchair |
---|---|---|---|---|---|---|
Base. | precision | 0.80 ± 0.02 | 0.95 ± 0.02 | 0.92 ± 0.01 | 0.97 ± 0.0 | 0.13 ± 0.04 |
recall | 0.91 ± 0.01 | 0.84 ± 0.02 | 0.93 ± 0.0 | 0.79 ± 0.06 | 0.93 ± 0.01 | |
f1-score | 0.85 ± 0.01 | 0.89 ± 0.02 | 0.92 ± 0.0 | 0.87 ± 0.04 | 0.23 ± 0.07 | |
specificity | 0.99 ± 0.0 | 1.0 ± 0.0 | 0.97 ± 0.0 | 0.95 ± 0.01 | 0.88 ± 0.05 | |
Aug. | precision | 0.84 ± 0.01 | 0.93 ± 0.0 | 0.91 ± 0.0 | 0.97 ± 0.0 | 0.18 ± 0.03 |
recall | 0.88 ± 0.01 | 0.83 ± 0.02 | 0.94 ± 0.0 | 0.85 ± 0.02 | 0.93 ± 0.01 | |
f1-score | 0.86 ± 0.01 | 0.88 ± 0.01 | 0.92 ± 0.0 | 0.90 ± 0.01 | 0.30 ± 0.04 | |
specificity | 0.99 ± 0.0 | 1.0 ± 0.0 | 0.97 ± 0.0 | 0.94 ± 0.0 | 0.92 ± 0.02 |
Appendix A.3. Fully-Rotated Test Set Results for Individual Classes
Mdl | Ax | Metric | Stairs Ascent | Stairs Descent | Static | Walking | Wheelchair |
---|---|---|---|---|---|---|---|
Base. | X | precision | 0.34 ± 0.32 | 0.40 ± 0.34 | 0.99 ± 0.01 | 0.53 ± 0.23 | 0.43 ± 0.29 |
recall | 0.66 ± 0.23 | 0.56 ± 0.31 | 0.58 ± 0.23 | 0.91 ± 0.06 | 0.33 ± 0.29 | ||
f1-score | 0.37 ± 0.3 | 0.39 ± 0.3 | 0.70 ± 0.16 | 0.65 ± 0.17 | 0.32 ± 0.27 | ||
specificity | 0.99 ± 0.02 | 0.97 ± 0.06 | 0.69 ± 0.21 | 0.93 ± 0.05 | 0.92 ± 0.1 | ||
Y | precision | 0.84 ± 0.03 | 0.79 ± 0.05 | 0.95 ± 0.01 | 0.96 ± 0.02 | 0.66 ± 0.17 | |
recall | 0.85 ± 0.04 | 0.97 ± 0.01 | 0.95 ± 0.02 | 0.96 ± 0.01 | 0.55 ± 0.2 | ||
f1-score | 0.84 ± 0.03 | 0.87 ± 0.03 | 0.95 ± 0.01 | 0.96 ± 0.01 | 0.57 ± 0.13 | ||
specificity | 0.99 ± 0.0 | 1.0 ± 0.0 | 0.99 ± 0.01 | 0.94 ± 0.01 | 0.98 ± 0.02 | ||
Z | precision | 0.43 ± 0.32 | 0.65 ± 0.21 | 0.98 ± 0.02 | 0.57 ± 0.23 | 0.48 ± 0.3 | |
recall | 0.61 ± 0.2 | 0.59 ± 0.24 | 0.73 ± 0.26 | 0.95 ± 0.03 | 0.19 ± 0.15 | ||
f1-score | 0.46 ± 0.28 | 0.58 ± 0.19 | 0.81 ± 0.19 | 0.69 ± 0.18 | 0.23 ± 0.18 | ||
specificity | 0.98 ± 0.01 | 0.95 ± 0.05 | 0.79 ± 0.26 | 0.95 ± 0.04 | 0.90 ± 0.09 | ||
Aug. | X | precision | 0.74 ± 0.07 | 0.71 ± 0.13 | 0.98 ± 0.01 | 0.95 ± 0.02 | 0.91 ± 0.04 |
recall | 0.91 ± 0.03 | 0.96 ± 0.03 | 0.96 ± 0.03 | 0.93 ± 0.02 | 0.59 ± 0.17 | ||
f1-score | 0.82 ± 0.05 | 0.81 ± 0.1 | 0.97 ± 0.01 | 0.94 ± 0.02 | 0.70 ± 0.12 | ||
specificity | 0.99 ± 0.0 | 1.0 ± 0.0 | 0.99 ± 0.01 | 0.90 ± 0.03 | 0.98 ± 0.02 | ||
Y | precision | 0.75 ± 0.04 | 0.81 ± 0.02 | 0.96 ± 0.0 | 0.97 ± 0.01 | 0.89 ± 0.04 | |
recall | 0.92 ± 0.02 | 0.97 ± 0.02 | 0.98 ± 0.0 | 0.94 ± 0.01 | 0.64 ± 0.13 | ||
f1-score | 0.83 ± 0.03 | 0.88 ± 0.02 | 0.97 ± 0.0 | 0.96 ± 0.01 | 0.74 ± 0.07 | ||
specificity | 0.99 ± 0.0 | 1.0 ± 0.0 | 0.99 ± 0.01 | 0.94 ± 0.01 | 0.98 ± 0.02 | ||
Z | precision | 0.70 ± 0.08 | 0.79 ± 0.06 | 0.97 ± 0.01 | 0.92 ± 0.03 | 0.93 ± 0.02 | |
recall | 0.93 ± 0.02 | 0.96 ± 0.02 | 0.98 ± 0.01 | 0.93 ± 0.02 | 0.42 ± 0.09 | ||
f1-score | 0.79 ± 0.06 | 0.86 ± 0.04 | 0.97 ± 0.0 | 0.93 ± 0.02 | 0.57 ± 0.08 | ||
specificity | 0.98 ± 0.01 | 0.95 ± 0.05 | 0.79 ± 0.26 | 0.95 ± 0.04 | 0.90 ± 0.09 |
Mdl | Ax | Metric | Stairs Ascent | Stairs Descent | Static | Walking | Wheelchair |
---|---|---|---|---|---|---|---|
Base. | X | precision | 0.40 ± 0.30 | 0.40 ± 0.31 | 0.98 ± 0.03 | 0.64 ± 0.13 | 0.40 ± 0.32 |
recall | 0.53 ± 0.24 | 0.49 ± 0.30 | 0.61 ± 0.17 | 0.96 ± 0.03 | 0.17 ± 0.17 | ||
f1-score | 0.41 ± 0.26 | 0.40 ± 0.28 | 0.73 ± 0.11 | 0.76 ± 0.09 | 0.20 ± 0.18 | ||
specificity | 0.99 ± 0.02 | 0.99 ± 0.02 | 0.75 ± 0.14 | 0.94 ± 0.04 | 0.94 ± 0.07 | ||
Y | precision | 0.89 ± 0.02 | 0.81 ± 0.02 | 0.91 ± 0.01 | 0.90 ± 0.02 | 0.70 ± 0.24 | |
recall | 0.80 ± 0.03 | 0.93 ± 0.02 | 0.90 ± 0.02 | 0.96 ± 0.01 | 0.24 ± 0.09 | ||
f1-score | 0.84 ± 0.02 | 0.87 ± 0.02 | 0.91 ± 0.01 | 0.93 ± 0.01 | 0.34 ± 0.09 | ||
specificity | 0.99 ± 0.0 | 1.0 ± 0.0 | 0.97 ± 0.01 | 0.92 ± 0.01 | 0.96 ± 0.02 | ||
Z | precision | 0.44 ± 0.36 | 0.68 ± 0.17 | 0.96 ± 0.04 | 0.63 ± 0.13 | 0.65 ± 0.31 | |
recall | 0.56 ± 0.16 | 0.62 ± 0.25 | 0.72 ± 0.21 | 0.98 ± 0.01 | 0.15 ± 0.10 | ||
f1-score | 0.42 ± 0.28 | 0.61 ± 0.17 | 0.80 ± 0.14 | 0.76 ± 0.09 | 0.18 ± 0.08 | ||
specificity | 0.99 ± 0.01 | 0.98 ± 0.03 | 0.82 ± 0.19 | 0.97 ± 0.02 | 0.89 ± 0.09 | ||
Aug. | X | precision | 0.80 ± 0.05 | 0.72 ± 0.11 | 0.94 ± 0.02 | 0.86 ± 0.03 | 0.86 ± 0.08 |
recall | 0.81 ± 0.08 | 0.84 ± 0.07 | 0.88 ± 0.04 | 0.96 ± 0.01 | 0.24 ± 0.10 | ||
f1-score | 0.80 ± 0.06 | 0.77 ± 0.09 | 0.91 ± 0.02 | 0.91 ± 0.02 | 0.37 ± 0.10 | ||
specificity | 0.99 ± 0.0 | 1.0 ± 0.0 | 0.95 ± 0.02 | 0.93 ± 0.01 | 0.94 ± 0.03 | ||
Y | precision | 0.84 ± 0.03 | 0.81 ± 0.02 | 0.92 ± 0.01 | 0.90 ± 0.02 | 0.81 ± 0.09 | |
recall | 0.88 ± 0.02 | 0.91 ± 0.02 | 0.90 ± 0.01 | 0.96 ± 0.0 | 0.26 ± 0.04 | ||
f1-score | 0.86 ± 0.02 | 0.86 ± 0.02 | 0.91 ± 0.01 | 0.93 ± 0.01 | 0.38 ± 0.04 | ||
specificity | 1.0 ± 0.0 | 1.0 ± 0.0 | 0.96 ± 0.0 | 0.92 ± 0.01 | 0.96 ± 0.01 | ||
Z | precision | 0.79 ± 0.05 | 0.80 ± 0.05 | 0.93 ± 0.01 | 0.85 ± 0.02 | 0.92 ± 0.01 | |
recall | 0.86 ± 0.04 | 0.89 ± 0.04 | 0.89 ± 0.02 | 0.96 ± 0.0 | 0.19 ± 0.03 | ||
f1-score | 0.82 ± 0.04 | 0.84 ± 0.03 | 0.91 ± 0.01 | 0.90 ± 0.02 | 0.31 ± 0.04 | ||
specificity | 1.0 ± 0.0 | 1.0 ± 0.0 | 0.96 ± 0.01 | 0.93 ± 0.01 | 0.93 ± 0.01 |
References
- Fu, B.; Kirchbuchner, F.; Kuijper, A.; Braun, A.; Vaithyalingam Gangatharan, D. Fitness activity recognition on smartphones using doppler measurements. Informatics 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.Y.; Scotland, A.; Lipsmeier, F.; Kilchenmann, T.; Jin, L.; Schjodt-Eriksen, J.; Wolf, D.; Zhang-Schaerer, Y.P.; Garcia, I.F.; Siebourg-Polster, J.; et al. Human activity recognition from sensor-based large-scale continuous monitoring of Parkinson’s disease patients. In Proceedings of the 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Philadelphia, PA, USA, 17–19 July 2017; pp. 249–250. [Google Scholar]
- Dang, L.M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognit. 2020, 108, 107561. [Google Scholar] [CrossRef]
- Roitberg, A.; Perzylo, A.; Somani, N.; Giuliani, M.; Rickert, M.; Knoll, A. Human activity recognition in the context of industrial human–robot interaction. In Proceedings of the Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Siem Reap, Cambodia, 9–12 December 2014; pp. 1–10. [Google Scholar]
- Schrader, L.; Vargas Toro, A.; Konietzny, S.; Rüping, S.; Schäpers, B.; Steinböck, M.; Krewer, C.; Müller, F.; Güttler, J.; Bock, T. Advanced sensing and human activity recognition in early intervention and rehabilitation of elderly people. J. Popul. Ageing 2020, 13, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Altini, M.; Casale, P.; Penders, J.; Amft, O. Cardiorespiratory fitness estimation in free-living using wearable sensors. Artif. Intell. Med. 2016, 68, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Chaari, M.; Abid, M.; Ouakrim, Y.; Lahami, M.; Mezghani, N. A Mobile Application for Physical Activity Recognition Using Acceleration Data from Wearable Sensors for Cardiac Rehabilitation. 2020. Available online: https://r-libre.teluq.ca/1936/1/HEALTHINF_2020_84_CR.pdf (accessed on 20 March 2023).
- Brown, C.J.; Friedkin, R.J.; Inouye, S.K. Prevalence and outcomes of low mobility in hospitalized older patients. J. Am. Geriatr. Soc. 2004, 52, 1263–1270. [Google Scholar] [CrossRef]
- Jiang, W.; Miao, C.; Ma, F.; Yao, S.; Wang, Y.; Yuan, Y.; Xue, H.; Song, C.; Ma, X.; Koutsonikolas, D.; et al. Towards environment independent device free human activity recognition. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 29 October–2 November 2018; pp. 289–304. [Google Scholar]
- Kunze, K.; Lukowicz, P. Sensor placement variations in wearable activity recognition. IEEE Pervasive Comput. 2014, 13, 32–41. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Zhang, S.; Shahabi, F.; Xia, S.; Deng, Y.; Alshurafa, N. Deep learning in human activity recognition with wearable sensors: A review on advances. Sensors 2022, 22, 1476. [Google Scholar] [CrossRef]
- Fridriksdottir, E.; Bonomi, A.G. Accelerometer-based human activity recognition for patient monitoring using a deep neural network. Sensors 2020, 20, 6424. [Google Scholar] [CrossRef]
- Saeedi, R.; Purath, J.; Venkatasubramanian, K.; Ghasemzadeh, H. Toward seamless wearable sensing: Automatic on-body sensor localization for physical activity monitoring. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5385–5388. [Google Scholar]
- Sztyler, T.; Stuckenschmidt, H. On-body localization of wearable devices: An investigation of position-aware activity recognition. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom), Sydney, Australia, 14–19 March 2016; pp. 1–9. [Google Scholar]
- Inoue, H. Data augmentation by pairing samples for images classification. arXiv 2018, arXiv:1801.02929. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Ohashi, H.; Al-Nasser, M.; Ahmed, S.; Akiyama, T.; Sato, T.; Nguyen, P.; Nakamura, K.; Dengel, A. Augmenting wearable sensor data with physical constraint for DNN-based human-action recognition. In Proceedings of the ICML 2017 Times Series Workshop, Sydney, NSW, Australia, 6–11 August 2017; pp. 6–11. [Google Scholar]
- Steven Eyobu, O.; Han, D.S. Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 2018, 18, 2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Um, T.T.; Pfister, F.M.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; pp. 216–220. [Google Scholar]
- Wang, J.; Zhu, T.; Gan, J.; Ning, H.; Wan, Y. Sensor data augmentation with resampling for contrastive learning in human activity recognition. arXiv 2021, arXiv:2109.02054. [Google Scholar] [CrossRef]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the International Conference on Machine Learning (PMLR), Virtual, 13–18 July 2020; pp. 1597–1607. [Google Scholar]
- Zimmermann, R.S.; Sharma, Y.; Schneider, S.; Bethge, M.; Brendel, W. Contrastive learning inverts the data generating process. In Proceedings of the International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021; pp. 12979–12990. [Google Scholar]
- GeneActiv. Available online: https://activinsights.com/technology/geneactiv/ (accessed on 20 March 2023).
- IntelliVue MX40front, Philips Healthcare. Available online: https://www.usa.philips.com/healthcare/product/HC865350/intellivue-mx40-patient-wearable-monitor (accessed on 20 March 2023).
- IntelliVue MX40side, Philips Healthcare. Available online: https://www.documents.philips.com/assets/20170523/b349908a9e374f02a157a77c016a06b7.pdf?_ga=2.3824953.803133925.1663919802-56406853.1639166097 (accessed on 20 March 2023).
- Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Towards Data Sci. 2017, 6, 310–316. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 20 March 2023).
- Van Dyk, D.A.; Meng, X.L. The art of data augmentation. J. Comput. Graph. Stat. 2001, 10, 1–50. [Google Scholar] [CrossRef]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Encycl. Database Syst. 2009, 5, 532–538. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Nahm, F.S. Nonparametric statistical tests for the continuous data: The basic concept and the practical use. Korean J. Anesthesiol. 2016, 69, 8–14. [Google Scholar] [CrossRef]
- Barshan, B.; Yurtman, A. Classifying daily and sports activities invariantly to the positioning of wearable motion sensor units. IEEE Internet Things J. 2020, 7, 4801–4815. [Google Scholar] [CrossRef]
- Portrait Mobile, GE Healthcare. Available online: https://www.gehealthcare.it/products/patient-monitoring/portrait-mobile (accessed on 20 March 2023).
- IntelliVue MX40, Philips Healthcare. Available online: https://www.philips.dk/healthcare/product/HC865351/philips-intellivue-mx40-patient-wearable-monitor-2-4-ghz-smart-hopping (accessed on 20 March 2023).
- Anguita, D.; Ghio, A.; Oneto, L.; Parra Perez, X.; Reyes Ortiz, J.L. A public domain dataset for human activity recognition using smartphones. In Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April2013; pp. 437–442. [Google Scholar]
- Malekzadeh, M.; Clegg, R.G.; Cavallaro, A.; Haddadi, H. Protecting sensory data against sensitive inferences. In Proceedings of the 1st Workshop on Privacy by Design in Distributed Systems, Porto, Portugal, 23 April 2018; pp. 1–6. [Google Scholar]
- Zhang, M.; Sawchuk, A.A. USC-HAD: A daily activity dataset for ubiquitous activity recognition using wearable sensors. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1036–1043. [Google Scholar]
- Jiang, W.; Yin, Z. Human activity recognition using wearable sensors by deep convolutional neural networks. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1307–1310. [Google Scholar]
- Wang, Z.; Yang, Z.; Dong, T. A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors 2017, 17, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bento, N.; Rebelo, J.; Barandas, M.; Carreiro, A.V.; Campagner, A.; Cabitza, F.; Gamboa, H. Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition. Sensors 2022, 22, 7324. [Google Scholar] [PubMed]
- Xue, T.; Liu, H. Hidden Markov Model and its application in human activity recognition and fall detection: A review. In Communications, Signal Processing, and Systems; Liang, Q., Wang, W., Liu, X., Na, Z., Zhang, B., Eds.; Singapore: Springer Singapore, 2022; pp. 863–869. [Google Scholar]
- Liu, H.; Schultz, I.T. Biosignal Processing and Activity Modeling for Multimodal Human Activity Recognition. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2021. [Google Scholar]
Age | Weight [kg] | Height [cm] | BMI [kg/m] | Age | Weight [kg] | Height [cm] | BMI [kg/m] | |
---|---|---|---|---|---|---|---|---|
Median | 41.5 | 71.5 | 174.5 | 23.05 | 44.5 | 75.0 | 175.0 | 25.34 |
Q1 | 25.8 | 61.2 | 167.8 | 21.32 | 32.8 | 68.5 | 166.5 | 23.77 |
Q3 | 53.3 | 79.5 | 184.8 | 25.12 | 54.3 | 86.5 | 182.0 | 26.28 |
Activity | Duration | Activity | Duration |
---|---|---|---|
Jump 3x (sync) ** | Self-paced | ||
Lying in bed ** | 3 min | Physioterapy on chair ** | 2 min |
Left side ** | 30 s | Patient transport in wheelchair ** | 1 min |
Right side ** | 30 s | Wheelchair self-push | Self-paced |
Reclined ** | 30 s | Crutches ** | Self-paced |
Upright ** | 30 s | Anterior walker ** | Self-paced |
Sitting edge of the bed ** | 30 s | IV pole ** | Self-paced |
Standing ** | 30 s | 4-wheel rollator ** | Self-paced |
0.6 km/h ** | 2 min | Walk slow * | Self-paced |
0.8 km/h ** | 2 min | Walk normal * | Self-paced |
1.0 km/h ** | 2 min | Walk fast * | Self-paced |
1.5 km/h ** | 2 min | Intermittent walking * | Self-paced |
2.0 km/h ** | 2 min | Shuffling * | Self-paced |
3.0 km/h ** | 2 min | Upstairs one leg first ** | Self-paced |
4.0 km/h ** | 2 min | Downstairs one leg first ** | Self-paced |
4.0 km/h inclined * | 2 min | Stairs ascent ** | Self-paced |
Washing hands ** | 1 min | Stairs descent ** | Self-paced |
Reading ** | 1 min | Jump 3x (sync) ** | Self-paced |
Train/Test | Participants | Rotations | Rotation Axis | Sensors’ Location |
---|---|---|---|---|
Train baseline model | WPS—15 participants | - | - | Front, side, gown, chest, center lower rib |
Train augmented model | WPS—15 participants | 0 to 180 deg. step 20 | Frontal (X-axis), sagittal (Z-axis) | Front, side, gown, chest, center lower rib |
Test holdout | WPS—4 holdout participants | Test sets: Original, real-life, fully-rotated test sets | Front, side, gown | |
SHS—20 participants | Front |
Author | Sensors’ Position | Applied Augmentation | Augmented Sensors | Recognized Activities |
---|---|---|---|---|
[17] | Forearm | Rotations around X-axis | Accelerometer Gyroscope EMG * | Holding, Twisting, Folding |
[18] | Left wrist | Averaging, combining, shuffling | Spectral features of accelerometer and gyroscope | Sitting, Standing, Walking |
[19] | Wrist | Rotation, Permutation, Time-warping, Magnitude-warping | Accelerometer | Motor state of Parkinson sbj: Bradyiknesia, Dyskinesia |
[20] | Mobile phone pockets | Resampling for contrastive learning | Accelerometer Gyroscope Magnetometer | UCI-HAR [37], MotionSense [38], USC-HAD [39] |
Proposed model | Body trunk | Rotations around the three axis separately | Accelerometer | Stairs up, Stairs down, Static, Walking, Wheelchair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caramaschi, S.; Papini, G.B.; Caiani, E.G. Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration. Appl. Sci. 2023, 13, 4175. https://doi.org/10.3390/app13074175
Caramaschi S, Papini GB, Caiani EG. Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration. Applied Sciences. 2023; 13(7):4175. https://doi.org/10.3390/app13074175
Chicago/Turabian StyleCaramaschi, Sara, Gabriele B. Papini, and Enrico G. Caiani. 2023. "Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration" Applied Sciences 13, no. 7: 4175. https://doi.org/10.3390/app13074175
APA StyleCaramaschi, S., Papini, G. B., & Caiani, E. G. (2023). Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration. Applied Sciences, 13(7), 4175. https://doi.org/10.3390/app13074175