A Perfect Decomposition Model for Analyzing Transportation Energy Consumption in China
Abstract
:1. Introduction
2. Methodology
2.1. Decomposition Model Construction According to Factor Direction
2.1.1. Two-Factor Decomposition Model
2.1.2. Three-Factor Decomposition Model
2.1.3. Multi-Factor Decomposition Model According to Factors Changing Direction
- One factor changes less than 0, i.e., ;
- More than one factor change less than 0, i.e., ;
2.2. Transportation Energy Consumption Decomposition Model
2.2.1. Change at the Same Direction
2.2.2. Change at Different Directions
- (i)
- When , and the formulas are as follows:
- (ii)
- When , and , the formulas are as follows:
3. Effective Verification and Case Study
3.1. The Effective Verification of the Perfect Decomposition Model
3.2. Perfect Decomposition Results Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jenne, C.A.; Cattell, R.K. Structural change and energy efficiency in industry. Energy Econ. 1983, 5, 114–123. [Google Scholar] [CrossRef]
- Doblin, C.P. Declining Energy Intensity in the U.S. Manufacturing Sector. Energy J. 1988, 9, 109–135. [Google Scholar] [CrossRef]
- Howarth, R.B. Energy use in U.S. manufacturing: The impacts of the energy shocks on sectoral output, industry structure, and energy intensity. J. Energy Dev. 1991, 14, 175–191. [Google Scholar]
- Marlay, R.C. Trends in industrial use of energy. Science 1984, 226, 1277–1283. [Google Scholar] [CrossRef]
- Boyd, G.; McDonald, J.F.; Ross, M.; Hansont, D.A. Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach. Energy J. 1987, 8, 77–96. [Google Scholar] [CrossRef]
- Boyd, G.A.; Hanson, D.A.; Sterner, T. Decomposition of changes in energy intensity: A comparison of the Divisia index and other methods. Energy Econ. 1988, 10, 309–312. [Google Scholar] [CrossRef]
- Divisia, F. L’indice Monétaire et la Théorie de la Monnaie; Société anonyme du Recueil Sirey: Paris, France, 1926. [Google Scholar]
- Howarth, R.B.; Schipper, L. Manufacturing Energy Use in Eight OECD Countries: Trends through 1988. Energy J. 1991, 12, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Howarth, R.B.; Schipper, L.; Duerr, P.A. Manufacturing energy use in eight OECD countries: Decomposing the impacts of changes in output, industry structure and energy intensity. Energy Econ. 1991, 13, 135–142. [Google Scholar] [CrossRef]
- Li, J.W.; Shrestha, R.M.; Foell, W.K. Structural change and energy use: The case of the manufacturing sector in Taiwan. Energy Econ. 1990, 12, 109–115. [Google Scholar] [CrossRef]
- Sun, J.W. Changes in energy consumption and energy intensity: A complete decomposition model. Energy Econ. 1998, 20, 85–100. [Google Scholar] [CrossRef]
- Sun, J.W.; Ang, B.W. Some properties of an exact energy decomposition model. Energy 2000, 25, 1177–1188. [Google Scholar] [CrossRef]
- Sun, J.W. Quantitative Analysis of Energy Consumption, Efficiency and Savings in the World, 1973–1990; Turku School of Economics Press: Turku, Finland, 1996; Volume A-4. [Google Scholar]
- Liu, X.Q.; Ong, H.L. The application of the Divisia index to the decomposition of changes in industrial energy consumption. Energy J. 1992, 13, 161–177. [Google Scholar] [CrossRef]
- Wood, R.; Lenzen, M. Aggregate measures of complex economic structure and evolution: A review and case study. J. Ind. Ecol. 2009, 13, 264–283. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition of industrial energy consumption: The energy intensity approach. Energy Econ. 1994, 16, 163–174. [Google Scholar] [CrossRef]
- Ang, B.W.; Lee, S.Y. Decomposition of industrial energy consumption: Some methodological and application issues. Energy Econ. 1994, 16, 83–92. [Google Scholar] [CrossRef]
- Ang, B.W.; Choi, K.H. Decomposition of aggregate energy and gas emission intensities for industry: A refined Divisia index method. Energy J. 1997, 18, 59–73. [Google Scholar] [CrossRef]
- Choi, K.-H.; Ang, B.W. Attribution of changes in Divisia real energy intensity index—An extension to index decomposition analysis. Energy Econ. 2012, 34, 171–176. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition methodology in industrial energy demand analysis. Energy 1995, 20, 1081–1095. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q. A survey of index decomposition analysis in energy and environmental studies. Energy 2000, 25, 1149–1176. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policy making in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 2003, 31, 1561–1566. [Google Scholar] [CrossRef]
- Ang, B.W.; Tian, G. Index decomposition analysis for comparing emission scenarios: Applications and challenges. Energy Econ. 2019, 83, 74–87. [Google Scholar] [CrossRef]
- Wang, H.; Pan, C.; Ang, B.W.; Zhou, P. Does Global Value Chain Participation Decouple Chinese Development from CO2 Emissions? A Structural Decomposition Analysis. Energy J. 2021, 42. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data. Energy Econ. 2022, 113, 106245. [Google Scholar] [CrossRef]
- Chung, H.S.; Rhee, H.C. A residual-free decomposition of the sources of carbon dioxide emissions: A case of the Korean industries. Energy 2001, 26, 15–30. [Google Scholar] [CrossRef]
- Lenzen, M. Decomposition analysis and the mean-rate-of-change index. Appl. Energy 2006, 83, 185–198. [Google Scholar] [CrossRef]
- Wood, R.; Lenzen, M. Zero-value problems of the logarithmic mean divisia index decomposition method. Energy Policy 2006, 34, 1326–1331. [Google Scholar] [CrossRef]
- Lee, K.; Oh, W. Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method. Energy Policy 2006, 34, 2779–2787. [Google Scholar] [CrossRef]
- Albrecht, J.; François, D.; Schoors, K. A Shapley decomposition of carbon emissions without residuals. Energy Policy 2002, 30, S0301–S4215. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhang, M.; Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 2011, 36, 5909–5915. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.M. Decomposition Analysis on Dematerialization for the Further Development of Circular Economy. Bioinform. Biomed. Eng. 2010, 30, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, G.; Mu, H.; Ning, Y. Energy and exergy efficiencies in the Chinese transportation sector, 1980–2009. Energy 2011, 36, 770–776. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Ning, Y. Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy 2009, 37, 767–773. [Google Scholar] [CrossRef]
Time | 1985–1995 | 1985–2012 | ||||||
---|---|---|---|---|---|---|---|---|
Model | ||||||||
Laspeyres model | 2680.71 | 3069.77 | 538.38 | −927.44 | 19,807.90 | 19,735.56 | 1442.69 | −1370.36 |
Complete decomposition model | 2306.64 | 2906.42 | 722.16 | −1321.94 | 23,233.83 | 20,770.77 | 6205.35 | −3742.29 |
Errors | — | 5.32% | 34.14% | 42.54% | — | 5.25% | 330.12% | 173.09% |
proposed perfect decomposition model | 2306.64 | 3397.81 | 716.47 | −1807.63 | 23,233.83 | 26,504.38 | 5190.34 | −8460.89 |
Errors | — | 10.69% | 33.08% | 94.91% | — | 34.30% | 259.77% | 517.42% |
Years | ||||||
---|---|---|---|---|---|---|
1985–1986 | 340.21 | 32.75 | −141.23 | 231.72 | 108.49 | 2.56 |
1986–1987 | 431.09 | 181.26 | −172.46 | 439.90 | −8.80 | −0.19 |
1987–1988 | 412.91 | 170.07 | −280.40 | 302.58 | 110.33 | 2.22 |
1988–1989 | 196.77 | −33.64 | −51.38 | 111.75 | 85.02 | 1.68 |
1989–1990 | −63.88 | 46.12 | 55.58 | 37.82 | −101.70 | −2.07 |
1990–1991 | 283.64 | −37.40 | −159.97 | 86.28 | 197.36 | 3.73 |
1991–1992 | 361.64 | 93.44 | −231.47 | 223.61 | 138.03 | 2.53 |
1992–1993 | 388.21 | 50.38 | −183.30 | 255.29 | 132.92 | 2.33 |
1993–1994 | 414.79 | 72.13 | −63.15 | 423.77 | −8.98 | −0.15 |
1994–1995 | 167.67 | 116.10 | −89.85 | 193.92 | −26.25 | −0.43 |
1995–1996 | 241.12 | 66.81 | 142.52 | 450.45 | −209.33 | −3.25 |
1996–1997 | −376.25 | 448.84 | −18.99 | 53.61 | −429.86 | −6.85 |
1997–1998 | −42.96 | 187.87 | 195.32 | 340.23 | −383.19 | −5.75 |
1998–1999 | 209.89 | 123.32 | 378.85 | 712.06 | −502.17 | −6.93 |
1999–2000 | 1139.04 | −299.36 | −760.84 | 78.85 | 1060.19 | 11.92 |
2000–2001 | −30.15 | 205.71 | 528.81 | 704.36 | −734.5 l | −9.41 |
2001–2002 | 610.43 | 75.41 | −107.62 | 578.22 | 32.20 | 0.35 |
2002–2003 | 552.78 | −126.55 | 24.64 | 450.87 | 101.90 | 1.05 |
2003–2004 | 1719.26 | −287.88 | −184.78 | 1246.60 | 472.66 | 4.19 |
2004–2005 | 1225.18 | −9.56 | 343.83 | 1559.46 | −334.27 | −2.78 |
2005–2006 | 1322.41 | 208.45 | −479.51 | 1 OS 1.34 | 271.06 | 1.98 |
2006–2007 | 1794.73 | 308.25 | −291.36 | 1811.62 | −16.89 | −0.11 |
2007–2008 | 1663.56 | 612.10 | −102.06 | 2173.60 | −510.04 | −3.02 |
2008–2009 | 698.49 | 1017.68 | −349.13 | 1367.05 | −668.56 | −3.69 |
2009–2010 | 2985.27 | 344.51 | −526.76 | 2803.02 | 182.25 | 0.84 |
2010–2011 | 2759.44 | 318.17 | −644.49 | 2433.12 | 326.32 | 1.34 |
2011–2012 | 1650.27 | 1438.64 | 23.83 | 3112.74 | −1462.47 | −5.70 |
1985–2012 | 26,504.38 | 5190.34 | −8460.89 | 23,233.83 | 3270.55 | 30,395.08 |
Years | Highway | Railway | Aviation | Water Transportation | Pipeline | Total |
---|---|---|---|---|---|---|
1985–1986 | 125.42 | 176.46 | 8.96 | 20.47 | 8.90 | 340.21 |
1986–1987 | 168.10 | 216.39 | 12.83 | 23.22 | 10.55 | 431.09 |
1987–1988 | 179.10 | 189.73 | 12.92 | 21.67 | 9.49 | 412.91 |
1988–1989 | 88.76 | 86.46 | 6.28 | 10.84 | 4.43 | 196.77 |
1989–1990 | −29.16 | −27.47 | −2.10 | −3.74 | −1.41 | −63.88 |
1990–1991 | 129.17 | 119.25 | 10.84 | 18.01 | 6.37 | 286.64 |
1991–1992 | 162.18 | 149.98 | 15.40 | 25.64 | 8.14 | 361.64 |
1992–1993 | 180.05 | 150.95 | 19.46 | 29.47 | 8.28 | 388.21 |
1993–1994 | 198.96 | 148.99 | 23.50 | 35.10 | 8.25 | 414.79 |
1994–1995 | 83.26 | 56.39 | 10.47 | 15.00 | 2.54 | 167.67 |
1995–1996 | 120.99 | 79.83 | 15.64 | 21.20 | 3.46 | 241.12 |
1996–1997 | −195.97 | −117.09 | −25.54 | −32.67 | −4.98 | −376.25 |
1997–1998 | −23.73 | −12.61 | −3.22 | −2.83 | −0.57 | −42.96 |
1998–1999 | 121.91 | 54.96 | 16.45 | 13.93 | 2.65 | 209.89 |
1999–2000 | 706.40 | 259.61 | 82.90 | 76.28 | 13.86 | 1139.04 |
2000–2001 | −18.19 | −6.47 | −2.51 | −2.62 | −0.35 | −30.15 |
2001–2002 | 394.87 | 123.22 | 58.37 | 26.93 | 7.05 | 610.43 |
2002–2003 | 364.39 | 102.70 | 53.19 | 26.16 | 6.33 | 552.78 |
2003–2004 | 1127.44 | 310.14 | 169.19 | 92.48 | 20.00 | 1719.26 |
2004–2005 | 795.29 | 200.77 | 129.56 | 84.43 | 15.13 | 1225.18 |
2005–2006 | 862.69 | 196.88 | 140.16 | 102.68 | 19.99 | 1322.41 |
2006–2007 | 1223.53 | 253.38 | 199.73 | 85.96 | 32.13 | 1794.73 |
2007–2008 | 1160.47 | 214.18 | 177.65 | 81.43 | 29.83 | 1663.56 |
2008–2009 | 503.70 | 80.31 | 70.08 | 33.05 | 11.36 | 698.49 |
2009–2010 | 2142.39 | 343.70 | 317.42 | 135.72 | 46.05 | 2985.27 |
2010–2011 | 1975.57 | 319.64 | 285.68 | 133.43 | 45.11 | 2759.44 |
2011–2012 | 1233.04 | 147.62 | 163.59 | 76.76 | 29.25 | 1650.27 |
1985–2012 | 12,016.48 | 10,303.26 | 1944.56 | 1702.93 | 537.14 | 26,504.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Jiang, X.; Lai, C.S. A Perfect Decomposition Model for Analyzing Transportation Energy Consumption in China. Appl. Sci. 2023, 13, 4179. https://doi.org/10.3390/app13074179
Yuan Y, Jiang X, Lai CS. A Perfect Decomposition Model for Analyzing Transportation Energy Consumption in China. Applied Sciences. 2023; 13(7):4179. https://doi.org/10.3390/app13074179
Chicago/Turabian StyleYuan, Yujie, Xiushan Jiang, and Chun Sing Lai. 2023. "A Perfect Decomposition Model for Analyzing Transportation Energy Consumption in China" Applied Sciences 13, no. 7: 4179. https://doi.org/10.3390/app13074179
APA StyleYuan, Y., Jiang, X., & Lai, C. S. (2023). A Perfect Decomposition Model for Analyzing Transportation Energy Consumption in China. Applied Sciences, 13(7), 4179. https://doi.org/10.3390/app13074179