Purification and Partial Characterization of a Bacteriocin Produced by Lactobacillus pentosus 124-2 Isolated from Dadih
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Indicator Strains and Media
2.2. Isolation and Screening of Bacteriocin-Producing Strain
2.3. Identification of LABs by Sequencing of 16S-rDNA
2.4. Production of Crude Bacteriocin
2.5. Purification of Bacteriocin
2.6. Antibacterial Activity of Bacteriocin
2.7. Determination of Protein
2.8. Determination of the Molecular Weight
2.9. Partial Characterization
2.10. Antimicrobial Activity Test
3. Results
3.1. Isolation and Screening of Bacteriocin-Producing Strain
3.2. Candidate for Bacteriocin Production
3.3. LAB Identification by 16S-rDNA Sequencing
3.4. Purification of Bacteriocin
3.5. Determination of the Molecular Weight of Bacteriocin L. pentosus
3.6. Partial Characterization of the Isolated Antibacterial Substance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef] [PubMed]
- Khochamit, N.; Siripornadulsil, S.; Sukon, P.; Siripornadulsil, W. Antibacterial Activity and Genotypic-Phenotypic Characteristics of Bacteriocin-Producing Bacillus Subtilis KKU213: Potential as a Probiotic Strain. Microbiol. Res. 2015, 170, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, Synthesis, Mechanism of Action and Resistance Development in Food Spoilage Causing Bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef]
- Zou, J.; Jiang, H.; Cheng, H.; Fang, J.; Huang, G. Strategies for Screening, Purification and Characterization of Bacteriocins. Int. J. Biol. Macromol. 2018, 117, 781–789. [Google Scholar] [CrossRef]
- Venema, K.; Surono, I.S. Microbiota Composition of Dadih—A Traditional Fermented Buffalo Milk of West Sumatra. Lett. Appl. Microbiol. 2019, 68, 234–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, M.; Li, Y.; Xu, L.; Wu, D.; Zhou, Q.; Li, P.; Gu, Q. A Novel Bacteriocin From Lactobacillus Pentosus ZFM94 and Its Antibacterial Mode of Action. Front. Nutr. 2021, 8, 710862. [Google Scholar] [CrossRef] [PubMed]
- Hayati, F.; Yuliana, T.; Rialita, T. Antimicrobial Activity of Bacteriocin like Inhibitory Substance (BLIS) and Lactic Acid Bacteria (LAB) Isolated from Traditional Fermented Buffalo Milk from West Sumatra, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012082. [Google Scholar] [CrossRef]
- Garsa, A.K.; Kumariya, R.; Sood, S.K.; Kumar, A.; Kapila, S. Bacteriocin Production and Different Strategies for Their Recovery and Purification. Probiot. Antimicrob. Proteins 2014, 6, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Adikari, A.M.M.U.; Priyashantha, H.; Disanayaka, J.N.K.; Jayatileka, D.V.; Kodithuwakku, S.P.; Jayatilake, J.A.M.S.; Vidanarachchi, J.K. Isolation, Identification and Characterization of Lactobacillus Species Diversity from Meekiri: Traditional Fermented Buffalo Milk Gels in Sri Lanka. Heliyon 2021, 7, e08136. [Google Scholar] [CrossRef]
- Todorov, S.D.; Popov, I.; Weeks, R.; Chikindas, M.L. Use of Bacteriocins and Bacteriocinogenic Beneficial Organisms in Food Products: Benefits, Challenges, Concerns. Foods 2022, 11, 3145. [Google Scholar] [CrossRef]
- Ismail, Y.S.; Yulvizar, C.; Mazhitov, B. Characterization of Lactic Acid Bacteria from Local Cows Milk Kefir. IOP Conf. Ser. Earth Environ. Sci. 2018, 130, 012019. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Kalaimurugan, D.; Sivasankar, P.; Arokiyaraj, S.; Venkatesan, S. Identification and Characterization of Pseudomonas Aeruginosa Derived Bacteriocin for Industrial Applications. Int. J. Biol. Macromol. 2020, 165, 2412–2418. [Google Scholar] [CrossRef] [PubMed]
- Feliatra, F.; Muchlisin, Z.A.; Teruna, H.Y.; Utamy, W.R.; Nursyirwani, N.; Dahliaty, A. Potential of Bacteriocins Produced by Probiotic Bacteria Isolated from Tiger Shrimp and Prawns as Antibacterial to Vibrio, Pseudomonas, and Aeromonas Species on Fish. F1000Research 2018, 7, 415. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; Srivastava, S. Purification and Characterization of Plantaricin LR14: A Novel Bacteriocin Produced by Lactobacillus plantarum LR/14. Appl. Microbiol. Biotechnol. 2008, 79, 759–767. [Google Scholar] [CrossRef]
- Hata, T.; Tanaka, R.; Ohmomo, S. Isolation and Characterization of Plantarisin Asm1: A New Bacteriocin Produced by Lactobacillus plantarum ASM1. Int. J. Food Microbiol. 2010, 137, 94–99. [Google Scholar] [CrossRef]
- Ge, J.; Sun, Y.; Xin, X.; Wang, Y.; Ping, W. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice. Sci. Rep. 2016, 6, 19366. [Google Scholar] [CrossRef] [Green Version]
- Afrin, S.; Hoque, M.A.; Sarker, A.K.; Satter, M.A.; Bhuiyan, M.N.I. Characterization and Profiling of Bacteriocin-like Substances Produced by Lactic Acid Bacteria from Cheese Samples. Access Microbiol. 2021, 3, 000234. [Google Scholar] [CrossRef]
- Ramli, S.; Radu, S.; Shaari, K.; Rukayadi, Y. Antibacterial Activity of Ethanolic Extract of Syzygium polyanthum L. (Salam) Leaves against Foodborne Pathogens and Application as Food Sanitizer. BioMed Res. Int. 2017, 2017, 9024246. [Google Scholar] [CrossRef] [Green Version]
- Mohite, A.M.; Sharma, N.; Aggarwal, S.; Sharma, S. Effect Of Tamarindus Coating on Post-Harvest Quality of Apples and Pears Stored at Different Conditions. Carpathian J. Food Sci. Technol. 2018, 10, 17–25. [Google Scholar]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S RRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [Green Version]
- St. John, K. Review Paper: The Shape of Phylogenetic Treespace. Syst. Biol. 2017, 66, e83–e94. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.Z.; Ricke, N.D.; Tran, H.K.; Van Voorhis, T. Bootstrap Embedding for Molecules. J. Chem. Theory Comput. 2019, 15, 4497–4506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telles, G.P.; Almeida, N.F.; Minghim, R.; Walter, M.E.M.T. Live Phylogeny. J. Comput. Biol. 2013, 20, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zou, J.; Cheng, H.; Fang, J.; Huang, G. Purification, Characterization, and Mode of Action of Pentocin JL-1, a Novel Bacteriocin Isolated from Lactobacillus pentosus, against Drug-Resistant Staphylococcus aureus. BioMed Res. Int. 2017, 2017, 7657190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Liu, G.; Shang, N.; Cheng, W.; Chen, S.; Li, P. Purification and Partial Amino Acid Sequence of Pentocin 31-1, an Anti-Listeria Bacteriocin Produced by Lactobacillus pentosus 31-1. J. Food Prot. 2009, 72, 2524–2529. [Google Scholar] [CrossRef]
- Hennessy, R.C.; Jørgensen, N.O.G.; Scavenius, C.; Enghild, J.J.; Greve-Poulsen, M.; Sørensen, O.B.; Stougaard, P. A Screening Method for the Isolation of Bacteria Capable of Degrading Toxic Steroidal Glycoalkaloids Present in Potato. Front. Microbiol. 2018, 9, 2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renschler, M.A.; Wyatt, A.; Anene, N.; Robinson-Hill, R.; Pickerill, E.S.; Fox, N.E.; Griffith, J.A.; McKillip, J.L. Using Nitrous Acid-Modified de Man, Rogosa, and Sharpe Medium to Selectively Isolate and Culture Lactic Acid Bacteria from Dairy Foods. J. Dairy Sci. 2020, 103, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Wirawati, C.U.; Sudarwanto, M.B.; Lukman, D.W.; Wientarsih, I.; Srihanto, E.A. Diversity of Lactic Acid Bacteria in Dadih Produced by Either Back-Slopping or Spontaneous Fermentation from Two Different Regions of West Sumatra, Indonesia. Vet. World 2019, 12, 823–829. [Google Scholar] [CrossRef] [Green Version]
- Yap, P.G.; Lai, Z.W.; Tan, J.S. Bacteriocins from Lactic Acid Bacteria: Purification Strategies and Applications in Food and Medical Industries: A Review. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 51. [Google Scholar] [CrossRef]
- Parada, J.L.; Caron, C.R.; Medeiros, A.B.P.; Soccol, C.R. Bacteriocins from Lactic Acid Bacteria: Purification, Properties and Use as Biopreservatives. Braz. Arch. Biol. Technol. 2007, 50, 521–542. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Mohite, A.M.; Sharma, N. Influence of Particle Size on Physical, Mechanical, Thermal, and Morphological Properties of Tamarind-Fenugreek Mucilage Biodegradable Films. Polym. Bull. 2023, 80, 3119–3133. [Google Scholar] [CrossRef]
Isolate | Qualitative | Morphology | |||||
---|---|---|---|---|---|---|---|
a Catalase Test | b Gram Stain | Cell Shape | Form | Edge | Elevation | Color | |
DSK 1 | (−) | (+) | Bacilli | Round | Slippery | Convex | Milky White |
DSK 2 | (−) | (+) | Bacilli | Round | Slippery | Convex | Milky White |
DSK 3 | (−) | (+) | Bacilli | Round | Slippery | Raised | Milky White |
DSK 4 | (−) | (−) | Bacilli | Round | Slippery | Convex | Milky White |
DSK 5 | (−) | (−) | Bacilli | Round | Slippery | Raised | Milky White |
Purification Stage | Volume (mL) | Protein Concentration (µg/mL) | Total Protein (mg) | a Total Activity (AU) | b Specific Activity (AU/mg) | c Yield (%) | d Purification (Fold) |
---|---|---|---|---|---|---|---|
Cell-Free Supernatant (CFS) | 1300 | 51.50 | 66.95 | 1609.91 | 24.05 | 100 | 1 |
Precipitation Ammonium Sulfate | 38 | 106.63 | 4.052 | 78.06 | 19.27 | 4.85 | 0.80 |
Gel Filtration Chromatography | 2 | 53.83 | 0.108 | 6.524 | 60.59 | 0.41 | 3.15 |
Sample | Clear Zone (mm) | |
---|---|---|
Salmonella sp. | S. aureus | |
Bacteriocin L. pentosus | 11.79 ± 2.51 | 9.96 ± 1.31 |
Antibiotic | 30 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuliana, T.; Pratiwi, A.R.; Zahratunnisa, S.; Rialita, T.; Cahyana, Y.; Harlina, P.W.; Marta, H. Purification and Partial Characterization of a Bacteriocin Produced by Lactobacillus pentosus 124-2 Isolated from Dadih. Appl. Sci. 2023, 13, 4277. https://doi.org/10.3390/app13074277
Yuliana T, Pratiwi AR, Zahratunnisa S, Rialita T, Cahyana Y, Harlina PW, Marta H. Purification and Partial Characterization of a Bacteriocin Produced by Lactobacillus pentosus 124-2 Isolated from Dadih. Applied Sciences. 2023; 13(7):4277. https://doi.org/10.3390/app13074277
Chicago/Turabian StyleYuliana, Tri, Annisa Rizka Pratiwi, Shafa Zahratunnisa, Tita Rialita, Yana Cahyana, Putri Widyanti Harlina, and Herlina Marta. 2023. "Purification and Partial Characterization of a Bacteriocin Produced by Lactobacillus pentosus 124-2 Isolated from Dadih" Applied Sciences 13, no. 7: 4277. https://doi.org/10.3390/app13074277
APA StyleYuliana, T., Pratiwi, A. R., Zahratunnisa, S., Rialita, T., Cahyana, Y., Harlina, P. W., & Marta, H. (2023). Purification and Partial Characterization of a Bacteriocin Produced by Lactobacillus pentosus 124-2 Isolated from Dadih. Applied Sciences, 13(7), 4277. https://doi.org/10.3390/app13074277