Can Semantics Uncover Hidden Relations between Neurodegenerative Diseases and Artistic Behaviors?
Abstract
:1. Introduction
2. Preliminaries and Background Knowledge
3. Survey Methodology
4. State-of-the-Art
4.1. Neurodegenerative Diseases and Artistic Behavior
4.2. Expert Systems and Decision Support Systems for NDs
4.3. Ontologies Related to NDs
5. Discussing Open Issues and Challenges
6. Proposed Approach
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mell, J.C.; Howard, S.M.; Miller, B.L. Art and the brain: The influence of frontotemporal dementia on an accomplished artist. Neurology 2003, 60, 1707–1710. [Google Scholar] [CrossRef]
- Gretton, C.; Ffytche, D.H. Art and the brain: A view from dementia. Int. J. Geriatr. Psychiatry 2014, 29, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Inzelberg, R. The awakening of artistic creativity and Parkinson’s disease. Behav. Neurosci. 2013, 127, 256–261. [Google Scholar] [CrossRef]
- Ruggiero, F.; Cortese, F.; Lavazza, A.; D’Urso, G.; Di Nuzzo, C.; Marceglia, S.; Pravettoni, G.; Priori, A.; Ferrucci, R. Do Neurodegenerative Diseases Affect Creativity? Divergent Thinking in Frontotemporal Dementia and Parkinson’s Disease. Creat. Res. J. 2019, 31, 102–109. [Google Scholar] [CrossRef]
- Koletis, A.; Markopoulos, A.; Kotis, K. Discovering Semantic Relations between Neurodegenerative Diseases and Artistic Behaviors. Challenges 2022, 13, 36. [Google Scholar] [CrossRef]
- Marson, F.; Lasaponara, S.; Cavallo, M. A scoping review of neuromodulation techniques in neurodegenerative diseases: A useful tool for clinical practice. Medicina 2021, 57, 215. [Google Scholar] [CrossRef] [PubMed]
- Lasaponara, S.; Marson, F.; Doricchi, F.; Cavallo, M. A scoping review of cognitive training in neurodegenerative diseases via computerized and virtual reality tools: What we know so far. Brain Sci. 2021, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, L.J.; Algehyne, E.A. Fuzzy based expert system for diagnosis of coronary artery disease in Nigeria. Health Technol. 2021, 11, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Kostovska, A.; Džeroski, S.; Panov, P. Semantic description of data mining datasets: An ontology-based annotation schema. In Proceedings of the International Conference on Discovery Science, Thesaloniki, Greece, 19–21 October 2020; pp. 140–155. [Google Scholar]
- Kotis, K.; Vouros, G.; Spiliotopoulos, D. Ontology engineering methodologies for the evolution of living and reused ontologies: Status, trends, findings and recommendations. Knowl. Eng. Rev. 2020, 35, E4. [Google Scholar] [CrossRef]
- Navare, S.; Sawant, S.; Taparia, S.; Tiwari, S.; Sonawane, P. Ontology based Disease Diagnosis using Natural Language Processing, SPARQL and Protégé from Patient Symptoms. In Proceedings of the 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA), Pune, India, 26–27 August 2022; pp. 1–6. [Google Scholar]
- World Wide Web Consortium (W3C). Available online: https://www.w3.org/ (accessed on 2 March 2023).
- Çelik Ertuğrul, D.; Elçi, A. A survey on semanticized and personalized health recommender systems. Expert Syst. 2022, 37, 213292716. [Google Scholar] [CrossRef]
- Vonk, J.M.; Jonkers, R.; Obler, L.K. Semantic subcategories of nouns and verbs: A neurolinguistic review on healthy adults and patients with Alzheimer’s disease. In Neuropsycholinguistic Perspectives on Language Cognition; Psychology Press: London, UK, 2015; pp. 79–92. [Google Scholar]
- Ghorbani, A.; Davoodi, F.; Zamanifar, K. Using type-2 fuzzy ontology to improve semantic interoperability for healthcare and diagnosis of depression. Artif. Intell. Med. 2023, 135, 102452. [Google Scholar] [CrossRef] [PubMed]
- Cross, V.; Chen, S. Fuzzy ontologies: State of the art revisited. In Proceedings of the North American Fuzzy Information Processing Society Annual Conference, Halifax, NS, Canada, 31 May–3 June 2018; pp. 230–242. [Google Scholar]
- Tan, H. A brief history and technical review of the expert system research. IOP Conf. Ser. Mater. Sci. Eng. 2017, 242, 012111. [Google Scholar] [CrossRef]
- Bayoudhi, L.; Sassi, N.; Jaziri, W. An overview of biomedical ontologies for pandemics and infectious diseases representation. Procedia Comput. Sci. 2021, 192, 4249–4258. [Google Scholar] [CrossRef] [PubMed]
- Protégé. Available online: stanford.edu (accessed on 2 March 2023).
- Apache Jena. Available online: https://jena.apache.org/ (accessed on 2 March 2023).
- Powell, J.; Hopkins, M. Graphs and the Semantic Web. In A Librarian’s Guide to Graphs, Data and the Semantic Web; Chandos Publishing: Cambridge, UK, 2015; pp. 15–19. [Google Scholar] [CrossRef]
- Paparidis, E.; Kotis, K. Knowledge Graphs and Machine Learning in Biased C4I Applications. 2021. Available online: https://arxiv.org/abs/2106.09258v1 (accessed on 2 March 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Belver, M.H.; Ullán, A.M. Artistic creativity and dementia. A study of assessment by experts. Arte Individuo Soc. 2017, 29, 127–138. [Google Scholar] [CrossRef]
- Mirabella, G. Is Art Therapy a Reliable Tool for Rehabilitating People Suffering from Brain/Mental Diseases? J. Altern. Complement. Med. 2015, 21, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, G.; Cipriani, L.; Danti, S.; Picchi, L.; Di Fiorino, M. Links Between Painting and Neurology: The Example of Dementia. Am. J. Alzheimer’s Dis. Other Dement. 2019, 34, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, A.; Williams, T.; Reilly, R.G. What paint can tell us: A fractal analysis of neurological changes in seven artists. Neuropsychology 2017, 31, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.; Piramide, N.; Elisabetta, S.; Agosta, F. Neurodegenerative Diseases and Changes in Artistic Expression. In Brain and Art; Springer: Cham, Switzerland, 2019; pp. 27–39. [Google Scholar] [CrossRef]
- Lauring, J.O.; Pelowski, M.; Specker, E.; Ishizu, T.; Haugbøl, S.; Hollunder, B.; Leder, H.; Stender, J.; Kupers, R. Parkinson’s disease and changes in the appreciation of art: A comparison of aesthetic and formal evaluations of paintings between PD patients and healthy controls. Brain Cogn. 2019, 136, 103597. [Google Scholar] [CrossRef] [PubMed]
- Geser, F.; Jellinger, K.A.; Fellner, L.; Wenning, G.K.; Yilmazer-Hanke, D.; Haybaeck, J. Emergent creativity in frontotemporal dementia. J. Neural. Transm. 2021, 128, 279–293. [Google Scholar] [CrossRef]
- Midorikawa, A.; Leyton, C.E.; Foxe, D.; Landin-Romero, R.; Hodges, J.R.; Piguet, O. All Is Not Lost: Positive Behaviors in Alzheimer’s Disease and Behavioral-Variant Frontotemporal Dementia with Disease Severity. J. Alzheimer’s Dis. 2016, 54, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Acosta, L.M.Y. Creativity and Neurological Disease. Curr. Neurol. Neurosci. Rep. 2014, 14, 464. [Google Scholar] [CrossRef] [PubMed]
- Canesi, M.; Rusconi, M.L.; Moroni, F.; Ranghetti, A.; Cereda, E.; Pezzoli, G. Creative Thinking, Professional Artists, and Parkinson’s Disease. J. Park. Dis. 2016, 6, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Perez Matos, J.A.; Richard, A.; Spee, B.T.; Pelowski, M. Neurodegenerative diseases, art and creativity: Therapeutic implications. Neurodegener. Dis. Manag. 2016, 11, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.R.; Carton, A.M.; Brotherhood, E.V.; Hardy, C.J.D.; Cohen, M.H.; Warren, J.D.; Crutch, S.J. Profiles in paint: Contrasting responses to a common artistic exercise by people with different dementias. Arts Health 2017, 11, 79–86. [Google Scholar] [CrossRef]
- Piechowski-Jozwiak, B.; Bogousslavsky, J. Neurological diseases in famous painters. Prog. Brain Res. 2013, 203, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Conde, S.; Macknik, S.L. Warped Perceptions. Sci. Am. Mind 2015, 26, 23–25. [Google Scholar] [CrossRef]
- Mazzucchi, A.; Sinforiani, E.; Boller, F. Artistic creativity, artistic production, and aging. Prog. Brain Res. 2013, 45–69. [Google Scholar] [CrossRef]
- Shimura, H.; Tanaka, R.; Urabe, T.; Tanaka, S.; Hattori, N. Art and Parkinson’s disease: A dramatic change in an artist’s style as an initial symptom. J. Neurol. 2011, 259, 879–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.G.; D’Souza, A.A.; Wiseheart, M. Art Training in Dementia: A Randomized Controlled Trial. Front. Psychol. 2020, 11, 585508. [Google Scholar] [CrossRef] [PubMed]
- Windle, G.; Gregory, S.; Newman, A.; Goulding, A.; O’Brien, D.; Parkinson, C. Understanding the impact of visual arts interventions for people living with dementia: A realist review protocol. Syst. Rev. 2014, 3, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, K. The Effect of Art Training on Dementia. 2016. Available online: https://core.ac.uk/download/pdf/77106853.pdf (accessed on 2 March 2023).
- Duncan, R.P.; Earhart, G.M. Are the Effects of Community-Based Dance on Parkinson Disease Severity, Balance, and Functional Mobility Reduced with Time? A 2-Year Prospective Pilot Study. J. Altern. Complement. Med. 2014, 20, 757–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, K.; Hewitt, J. Dance as an intervention for people with Parkinson’s disease: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2012, 47, 445–456. [Google Scholar] [CrossRef]
- De Souza, L.C.; Guimarães, H.C.; Teixeira, A.L.; Caramelli, P.; Levy, R.; Dubois, B.; Volle, E. Frontal lobe neurology and the creative mind. Front. Psychol. 2014, 5, 761. [Google Scholar] [CrossRef] [Green Version]
- Pelowski, M.; Spee, B.; Richard, A.; Krack, P.; Bloem, B. What Parkinson’s Reveals About the Artistic Spark. Am. Sci. 2020, 108, 240. [Google Scholar] [CrossRef]
- Cucca, A.; Di Rocco, A.; Acosta, I.; Beheshti, M.; Berberian, M.; Bertisch, H.C.; Ghilardi, M.F. Art therapy for Parkinson’s disease. Park. Relat. Disord. 2021, 84, 148–154. [Google Scholar] [CrossRef]
- Pidgeon, L.M.; Grealy, M.; Duffy, A.H.B.; Hay, L.; McTeague, C.; Vuletic, T.; Gilbert, S.J. Functional neuroimaging of visual creativity: A systematic review and meta-analysis. Brain Behav. 2016, 6, e00540. [Google Scholar] [CrossRef] [Green Version]
- Hagerhall, C.M.; Laike, T.; Taylor, R.P.; Küller, M.; Küller, R.; Martin, T.P. Investigations of Human EEG Response to Viewing Fractal Patterns. Perception 2008, 37, 1488–1494. [Google Scholar] [CrossRef]
- Alexiou, A.; Psiha, M.; Vlamos, P. Towards an Expert System for Accurate Diagnosis and Progress Monitoring of Parkinson’s Disease. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2014; pp. 151–164. [Google Scholar] [CrossRef]
- Hosseini, A.; Asadi, F.; Arani, L.A. Development of a Knowledge-based Clinical Decision Support System for Multiple Sclerosis Diagnosis. J. Med. Life 2020, 13, 612–623. [Google Scholar] [CrossRef]
- Ferreira, D.; Pereira, J.B.; Volpe, G.; Westman, E. Subtypes of Alzheimer’s Disease Display Distinct Network Abnormalities Extending Beyond Their Pattern of Brain Atrophy. Front. Neurol. 2019, 10, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, J.; Langerman, H. Alzheimer’s Disease—Why We Need Early Diagnosis. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zekri, F.; Bouaziz, R.; Turki, E. A fuzzy-based ontology for Alzheimer’s disease decision support. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015. [Google Scholar] [CrossRef]
- Soteriou, M. The Mind’s Construction: The Ontology of Mind and Mental Action; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- SNOMED CT. Available online: https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct (accessed on 2 March 2023).
- Unified Medical Language System (UMLS) Metathesaurus. Available online: https://uts.nlm.nih.gov/uts/umls/home (accessed on 2 March 2023).
- Manda, P.; Kemp, J.; Gupta, D.; Kaur, P.; Visweswaran, S. Parkinson’s Disease Ontology-Driven Expert System (PD-ODES): A case study in semantic-driven clinical decision support for Parkinson’s disease. J. Biomed. Inform. 2017, 74, 23–34. [Google Scholar]
- Amanzadeh, M.; Moghaddasi, H.; Rabiei, R.; Amini Harandi, A.; Haghighi, H. Difficulties of Diagnosing Alzheimer’s Disease: The Application of Clinical Decision Support Systems. Arch. Adv. Biosci. 2019, 9, 47–54. [Google Scholar] [CrossRef]
- Stavropoulos, T.G.; Meditskos, G.; Lazarou, I.; Mpaltadoros, L.; Papagiannopoulos, S.; Tsolaki, M.; Kompatsiaris, I. Detection of Health-Related Events and Behaviours from Wearable Sensor Lifestyle Data Using Symbolic Intelligence: A Proof-of-Concept Application in the Care of Multiple Sclerosis. Sensors 2021, 21, 6230. [Google Scholar] [CrossRef] [PubMed]
- Sherimon, V.; Nair, R.; Mathew, R. A Systematic Review of Clinical Decision Support Systems in Alzheimer’s Disease Domain. Int. J. Online Biomed. Eng. 2021, 17, 74. [Google Scholar] [CrossRef]
- PredictND: Clinical Decision Support System for Dementia. Available online: https://digital-strategy.ec.europa.eu/en/news/predictnd-clinical-decision-support-system-dementia (accessed on 2 March 2023).
- EU neuGRID4You (N4U) Project. Available online: https://neugrid4you.eu/datasets/ (accessed on 2 March 2023).
- Munir, K.; de Ramón-Fernández, A.; Iqbal, S.; Javaid, N. Neuroscience patient identification using big data and fuzzy logic–An Alzheimer’s disease case study. Expert Syst. Appl. 2019, 136, 410–425. [Google Scholar] [CrossRef]
- Kueper, J.K.; Speechley, M.; Montero-Odasso, M. The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog): Modifications and Responsiveness in Pre-Dementia Populations. A Narrative Review. J. Alzheimer’s Dis. 2018, 63, 423–444. [Google Scholar] [CrossRef] [Green Version]
- Dramé, K.; Diallo, G.; Delva, F.; Dartigues, J.F.; Mouillet, E.; Salamon, R.; Mougin, F. Reuse of termino-ontological resources and text corpora for building a multilingual domain ontology: An application to Alzheimer’s disease. J. Biomed. Inform. 2014, 48, 171–182. [Google Scholar] [CrossRef] [PubMed]
- (ITII); Web of Science. (Emerging S. C. Index), Application of the Fuzzy Knowledge Base in the Construction of Expert Systems. Available online: https://www.academia.edu/36663430/Application_of_the_Fuzzy_Knowledge_Base_in_the_Construction_of_Expert_Systems (accessed on 3 January 2023).
- Neo4j Graph Data Platform, a Graph Database Management System. Available online: https://neo4j.com/ (accessed on 2 March 2023).
- Oluwafemi, A.; Jimoh, I. Expert System for Diagnosis Neurodegenerative Diseases. Int. J. Comput. Inf. Technol. 2015, 4, 4. [Google Scholar]
- Martínez-Romero, M.; Jonquet, C.; O’Connor, M.J.; Graybeal, J.; Pazos, A.; Musen, M.A. NCBO Ontology Recommender 2.0: An enhanced approach for biomedical ontology recommendation. J. Biomed. Semant. 2017, 8, 1–22. [Google Scholar] [CrossRef] [Green Version]
- National Centre for Biomedical Ontology (NCBO). Available online: https://ncbo.bioontology.org/ (accessed on 2 March 2023).
- Ruby on Rails—A Web-App Framework That Includes Everything Needed to Create Database-Backed Web Applications According to the Model-View-Controller (MVC) Pattern. Available online: https://rubyonrails.org/ (accessed on 2 March 2023).
- Schriml, L.; Arze, C.; Nadendla, S.; Chang, W.; Mazaitis, M.; Felix, V.; Kibbe, W.A. Disease Ontology: A backbone for disease semantic integration. Nucleic Acids Res. 2012, 40, D940–D946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Disease Ontology. Available online: https://disease-ontology.org/ (accessed on 2 March 2023).
- Zulfiqar, A.; Vaudelle, O.; Hajjam, M.; Geny, B.; Talha, S.; Letourneau, D.; Hajjam, J.; Erve, S.; Hajjam El Hassani, A.; Andrès, E. Results of the “GER-e-TEC” Experiment Involving the Use of an Automated Platform to Detect the Exacerbation of Geriatric Syndromes. J. Clin. Med. 2020, 9, 3836. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Valadés, A.; Martínez-Tomás, R.; Rincón-Zamorano, M. Ontologies for Early Detection of the Alzheimer Disease and Other Neurodegenerative Diseases. Underst. Brain Funct. Emot. 2019, 8, 42–50. [Google Scholar] [CrossRef]
- Gibaud, B.; Kassel, G.; Dojat, M.; Batrancourt, B.; Michel, F.; Gaignard, A.; Montagnat, J. NeuroLOG: Sharing neuroimaging data using an ontology-based federated approach. AMIA Annu. Symp. Proc. 2011, 2011, 472–480. [Google Scholar]
- Temal, L.; Pascal, L.; Gibaud, B.; Dojat, M.; Kassel, G.; Lapujade, A. OntoNeuroBase: A Multi-Layered Application Ontology in Neuroimaging. In Proceedings of the Second Workshop: Formal Ontologies Meet Industry (FOMI 2006), Trento, Italy, 14–15 December 2006. [Google Scholar]
- NITRC: Biomedical Informatics Research Network. Available online: https://www.nitrc.org/projects/birn/ (accessed on 2 March 2023).
- Bug, W.J.; Ascoli, G.A.; Grethe, J.S.; Gupta, A.; Fennema-Notestine, C.; Laird, A.R.; Martone, M.E. The NIFSTD and BIRNLex vocabularies: Building comprehensive ontologies for neuroscience. Neuroinformatics 2008, 6, 175–194. [Google Scholar] [CrossRef] [Green Version]
- Keator, D.B.; Grethe, J.S.; Marcus, D.; Ozyurt, B.; Gadde, S.; Murphy, S.; Papadopoulos, P. A national human neuroimaging collaboratory enabled by the Biomedical Informatics Research Network (BIRN). IEEE Trans. Inf. Technol. Biomed. 2008, 12, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Benkner, S.; Arbona, A.; Berti, G.; Chiarini, A.; Dunlop, R.; Engelbrecht, G.; Wood, S. @ neurIST: Infrastructure for advanced disease management through integration of heterogeneous data, computing, and complex processing services. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Valades, A.; Martinez-Tomas, R.; Rincon, M. Integrative Base Ontology for the research analysis of Alzheimer’s disease-related mild cognitive impairment. Front. Neuroinformatics 2021, 15, 561691. [Google Scholar] [CrossRef]
- Younesi, E.; Malhotra, A.; Gündel, M.; Scordis, P.; Kodamullil, A.T.; Page, M.; Müller, B.; Springstubbe, S.; Wüllner, U.; Scheller, D.; et al. PDON: Parkinson’s disease ontology for representation and modeling of the Parkinson’s disease knowledge domain. Theor. Biol. Med. Model. 2015, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Gene Expression Omnibus (NCBI). Available online: https://www.ncbi.nlm.nih.gov/geo/ (accessed on 2 March 2023).
- Martins, M.; Rosa, A.; Guedes, L.C.; Fonseca, B.V.; Gotovac, K.; Violante, S.; Oliveira, S.A. Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS ONE 2011, 6, e25443. [Google Scholar] [CrossRef]
- Ferrucci, D.; Lally, A. Building an example application with the unstructured information management architecture. IBM Syst. J. 2014, 43, 455–475. [Google Scholar] [CrossRef]
- The Unstructured Information Management Architecture (UIMA). Available online: https://uima.apache.org/downloads/releaseDocs/2.2.1-incubating/docs/html/index.html (accessed on 2 March 2023).
- Parkinson and Movement Disorder Ontology. Available online: https://bioportal.bioontology.org/ontologies/PMDO (accessed on 2 March 2023).
- HPO Consortium. Available online: https://hpo.jax.org/app/ (accessed on 2 March 2023).
- Gardner, D.; Akil, H.; Ascoli, G.A.; Gardner, E.P. The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience. Neuroinformatics 2008, 6, 149–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The National Institute of Neurological Disorders and Stroke (NINDS) Parkinson’s Disease Biomarkers Program (PDBP). Available online: https://pdbp.ninds.nih.gov/about (accessed on 2 March 2023).
- Neuroscience Information Framework. Available online: https://neuinfo.org/ (accessed on 2 March 2023).
- Malhotra, A.; Younesi, E.; Gündel, M.; Müller, B.; Heneka, M.T.; Hofmann-Apitius, M. ADO: A disease ontology representing the domain knowledge specific to Alzheimer’s disease. Alzheimer’s Dement. 2013, 10, 238–246. [Google Scholar] [CrossRef] [PubMed]
- The Fraunhofer Institute SCAI. Available online: https://www.scai.fraunhofer.de/en.html (accessed on 2 March 2023).
- Neuroservices-Alliances. Available online: https://www.neuroservice.com/neuroservices-alliance/ (accessed on 2 March 2023).
- Alzheimer’s Disease Ontology. Available online: https://bioportal.bioontology.org/ontologies/ADO (accessed on 2 March 2023).
- Refolo, L.M.; Snyder, H.; Liggins, C.; Ryan, L.; Silverberg, N.; Petanceska, S.; Carrillo, M.C. Common Alzheimer’s disease research ontology: National Institute on Aging and Alzheimer’s Association collaborative project. Alzheimer’s Dement. 2012, 8, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Henry, V.; Moszer, I.; Dameron, O.; Potier, M.C.; Hofmann-Apitius, M.; Colliot, O. Converting alzheimer’s disease map into a heavyweight ontology: A formal network to integrate data. In Proceedings of the 13th International Conference on Data Integration in the Life Sciences, Hannover, Germany, 20–21 November 2018; pp. 1–9. [Google Scholar]
- Shoaip, N.; Rezk, A.; El-Sappagh, S.; Alarabi, L.; Barakat, S.; Elmogy, M.M. A Comprehensive Fuzzy Ontology-Based Decision Support System for Alzheimer’s Disease Diagnosis. IEEE Access 2021, 9, 31350–31372. [Google Scholar] [CrossRef]
- LogMap System. Available online: https://www.cs.ox.ac.uk/isg/tools/LogMap/ (accessed on 2 March 2023).
- Salvadores, M.; Alexander, P.R.; Musen, M.A.; Noy, N.F. BioPortal as a Dataset of Linked Biomedical Ontologies and Terminologies in RDF; IOS Press: Amsterdam, The Netherlands, 2009; pp. 1–8. [Google Scholar]
- Noy, N.F.; Shah, N.H.; Whetzel, P.L.; Dai, B.; Dorf, M.; Griffith, N.; Musen, M.A. BioPortal: Ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 2009, 37, W170–W173. [Google Scholar] [CrossRef]
- Semantic Sensor Network Ontology. Available online: https://www.w3.org/TR/vocab-ssn/ (accessed on 2 March 2023).
- Smart Applications REFerence Ontology. Available online: https://saref.etsi.org/ (accessed on 2 March 2023).
- SAREF4WEAR: An extension of SAREF for Wearables. Available online: https://saref.etsi.org/saref4wear/v1.1.1/ (accessed on 2 March 2023).
- The DAHCC Ontology. Available online: https://dahcc.idlab.ugent.be/Ontology/index.html (accessed on 2 March 2023).
Ontology | Domain | Language | Fuzzy Logic | Availability | Status |
---|---|---|---|---|---|
DO | Human Disease | OWL, OBO, RDF | Yes | Open Source | Up to date |
HPO | Human Disease | OWL, OBO, 1n2RDF, JSON | No | Open Source | Up to date |
GMA | Elderly Motor Symptoms | OWL | Yes | Free | Last update 2018 |
OntoNeuroLOG | NDs | OWL, RDF, JSON | No | Free | Last update 2017 |
BIRNLex | Neuroscience | OWL, OBO, RDF | Yes | Open Source | Last update 2021 |
NIO | Neuroscience | OWL, RDF | Yes | Free | Last update 2018 |
PDON | PD | OWL | No | Free | Up to date |
PMDO | PD | OWL | No | Free | Up to date |
PDKO | PD | OWL | No | - | Dead |
ADO | AD | OWL | No | Free | Last update 2021 |
ADMO | AD | OWL, RDF | No | Free | Up to date |
ADIO | AD | OWL | No | Open Source | Last update 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koletis, A.; Bitilis, P.; Zafeiropoulos, N.; Kotis, K. Can Semantics Uncover Hidden Relations between Neurodegenerative Diseases and Artistic Behaviors? Appl. Sci. 2023, 13, 4287. https://doi.org/10.3390/app13074287
Koletis A, Bitilis P, Zafeiropoulos N, Kotis K. Can Semantics Uncover Hidden Relations between Neurodegenerative Diseases and Artistic Behaviors? Applied Sciences. 2023; 13(7):4287. https://doi.org/10.3390/app13074287
Chicago/Turabian StyleKoletis, Adam, Pavlos Bitilis, Nikolaos Zafeiropoulos, and Konstantinos Kotis. 2023. "Can Semantics Uncover Hidden Relations between Neurodegenerative Diseases and Artistic Behaviors?" Applied Sciences 13, no. 7: 4287. https://doi.org/10.3390/app13074287
APA StyleKoletis, A., Bitilis, P., Zafeiropoulos, N., & Kotis, K. (2023). Can Semantics Uncover Hidden Relations between Neurodegenerative Diseases and Artistic Behaviors? Applied Sciences, 13(7), 4287. https://doi.org/10.3390/app13074287