Pore Fractal Characteristics of Lacustrine Shale of Upper Cretaceous Nenjiang Formation from the Songliao Basin, NE China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. 2D Pore Structure
4.1.1. SEM Analysis
4.1.2. PCAS Analysis
4.2. N2 Adsorption and Desorption Isotherms
4.3. Fractal Dimensions
4.4. Mineralogy
4.5. Organic Geochemistry
5. Discussion
5.1. Relationships between Fractal Dimensions and Pore Structure Parameters
5.2. Relationships among the Sedimentary Environment, Fractal Dimensions, and Mineral Compositions
5.3. Relationships between TOC Content and Fractal Dimensions of Shale Pores
5.4. Relationships between Fractal Dimensions and Free Oil Content
6. Conclusions
- (1)
- The samples of K2n1+2 mainly had mineral intergranular pores and small numbers of organic pores and mineral intragranular pores. The pores were mainly wedge-shaped. The inorganic pores were much larger than the organic pores. The clay mineral and quartz contents had no clear control on the pore development in the K2n1+2 shales.
- (2)
- The negative correlation between the fractal dimensions (D1 and D2) and the TOC content may be due to expansion of hydrocarbon, which was generated more in high-TOC intervals. Therefore, when extracting oil resources in the low-maturity shales of K2n1+2 in the Songliao Basin, it would be beneficial to find the area with higher TOC contents, smaller fractal dimensions, and larger pore size. This provides a reference for the shale oil evaluation of K2n1+2 in the Songliao Basin and complements the lacustrine pore characteristics, which provides a reference value for oil and gas exploration and development in the Songliao Basin and a quantitative evaluation of continuous lacustrine pore characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Jarvie, D.M. Shale Resource Systems for Oil and Gas: Part 2: Shale-oil Resource Systems. In Shale Reservoirs—Giant Resources for the 21st Century; AAPG Memoir; Breyer, J.A., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012; Volume 97, pp. 89–119. [Google Scholar] [CrossRef]
- Lv, D.W.; Chen, J.T.; Li, Z.X.; Zheng, G.Q.; Song, C.Y.; Liu, H.Y.; Meng, Y.R.; Wang, D.D. Controlling Factors, Accumulation Model and Target Zone Prediction of the Coal-bed Methane in the Huanghebei Coalfield, North China. Resour. Geol. 2014, 64, 332–345. [Google Scholar] [CrossRef]
- Lv, D.W.; Li, Z.X.; Wang, D.D.; Li, Y.; Liu, H.Y.; Liu, Y.; Wang, P.L. Sedimentary Model of Coal and Shale in the Paleogene Lijiaya Formation of the Huangxian Basin: Insight from Petrological and Geochemical Characteristics of Coal and Shale. Energy Fuels 2019, 33, 10442–10456. [Google Scholar] [CrossRef]
- Reynolds, D.B.; Umekwe, M.P. Shale-Oil Development Prospects: The Role of Shale-Gas in Developing Shale-Oil. Energies 2019, 12, 3331. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Tsau, J.S.; Barati, R. Investigation of Shale-Gas-Production Behavior: Evaluation of the Effects of Multiple Physics on the Matrix. SPE Reservoir Eval. SPE Res. Eval. Eng. 2020, 23, 68–80. [Google Scholar] [CrossRef]
- Liang, Z.K.; Li, Z.; Jiang, Z.X.; Gao, F.L.; Zhang, Y.H.; Xiao, L.; Yang, Y.D.; Hou, Y.F.; Wang, L.W. Characteristics of Pore Structure and Fractal Dimension in Continental Shale Based on NMR Experiments and SEM Image Analyses-A Case Study of Shahezi Formation Shale in Changling Fault Depression of Songliao Basin, China. JEES 2020, 42, 313–328. [Google Scholar] [CrossRef]
- Zhu, R.K.; Wu, S.T.; Su, L.; Cui, J.W.; Mao, Z.G.; Zhang, X.X. Problems and Future Works of Porous Texture Characterization of Tight Reservoirs in China. Acta Pet. Sin. 2016, 37, 1323–1336. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Cui, J.W.; Zou, C.N.; Zhu, R.K.; Bai, B.; Wu, S.T.; Wang, T. New advances in shale porosity research. Adv. Earth Sci. 2012, 27, 319–325. [Google Scholar]
- Chen, Z.H.; Osadetz, K.G.; Jiang, C.Q.; Li, M.W. Spatial variation of Bakken or Lodgepole oils in the Canadian Williston Basin. AAPG Bull. 2009, 93, 829–851. [Google Scholar] [CrossRef]
- Jarvie, D.M. Williston Basin Petroleum Systems: Inferences from Oil Geochemistry and Geology. Mt. Geol. 2001, 38, 19–41. Available online: https://www.researchgate.net/publication/279546481 (accessed on 25 December 2022).
- Treadgold, G.; Campbell, B.; Mclain, B.; Sinclair, S.; Nicklin, D. Eagle Ford shale prospecting with 3D seismic data within a tectonic and depositional system framework. Lead. Edge 2011, 30, 48. [Google Scholar] [CrossRef]
- Zhao, J.H.; Jin, Z.Z.; Hu, Q.H.; Jin, Z.K.; Barber, T.J.; Zhang, Y.X.; Bleuel, M. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs. Sci. Rep. 2017, 7, 15413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Jin, Z.; Zhao, J.; Zhao, J.W.; Liu, Q. Influence of sedimentary environment on organic matter enrichment in shale: A case study of the Wufeng and Longmaxi Formations of the Sichuan Basin, China. Mar. Pet. Geol. 2018, 92, 880–894. [Google Scholar] [CrossRef]
- Ter Heege, J.; Zijp, M.; Nelskamp, S.; Douma, L.; Verreussel, R.; Ten Veen, J.; de Bruin, G.; Peters, R. Sweet spot identification in underexplored shales using multidisciplinary reservoir characterization and key performance indicators: Example of the Posidonia Shale Formation in the Netherlands. J. Nat. Gas. Sci. Eng. 2015, 27, 558–577. [Google Scholar] [CrossRef]
- Pu, B.L.; Jiang, Y.L.; Wang, Y.; Bao, S.J.; Liu, X.J. Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi Formation of Sichuan Basin. Acta Pet. Sin. 2010, 32, 225–230. [Google Scholar] [CrossRef]
- Fan, Y.C.; Liu, K.Y.; Yu, L.J.; Liu, J.; Regenauer-Lieb, K. Assessment of multi-scale pore structures and pore connectivity domains of marine shales by fractal dimensions and correlation lengths. Fuel 2022, 330, 125463. [Google Scholar] [CrossRef]
- Cao, T.T.; Song, Z.G.; Wang, S.B.; Xia, J. Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 35, 882–895. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, Y.; Zhu, Y.; Wang, G.; Chong, X.; Hu, X. Micropore heterogeneity of marine shale reservoirs and its quantitative characterization. J. China Univ. Min. Technol. 2018, 47, 1–12. [Google Scholar] [CrossRef]
- Li, M.; Pang, X.Q.; Xiong, L.; Hu, T.; Chen, D.; Zhao, Z.; Hui, S.S.; Liu, Y.; Zhang, S.Y. The main controlling factors on shale gas occurrence characteristics in deep and high-over mature shales: A case study of Silurian Longmaxi Formation in the Sichuan Basin, southern China. Energy Rep. 2022, 8, 6901–6913. [Google Scholar] [CrossRef]
- Osterrieth, J.W.M.; Rampersad, J.; Madden, D.; Rampal, N.; Skoric, L.; Connolly, B.; Allendorf, M.D.; Stavila, V.; Snider, J.L.; Ameloot, R.; et al. How Reproducible are Surface Areas Calculated from the BET Equation? Adv. Mater. 2022, 34, 2201502. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.N.; Yang, Z.; He, D.B.; Wei, Y.S.; Li, J.; Jia, A.L.; Chen, J.J.; Zhao, Q.; Li, Y.L.; Li, J.; et al. Theory, Technology and Prospects of Conventional and Un conventional Natural Gas. Pet. Explor. Dev. 2018, 45, 575–587. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.C.; Tang, X. Microscopic pore types and its impact on the storage and permeability of continental shale gas, Ordos Basin. Earth Sci. Front. 2013, 20, 240–250. [Google Scholar]
- Nie, H.K.; Zhang, J.C. Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin. Pet. Geol. Exp. 2011, 33, 219–225. [Google Scholar]
- Yang, F.; Ning, Z.F.; Kong, D.T.; Liu, H.Q. Pore structure of shales from high pres sure mercury injection and nitrogen adsorption method. Nat. Gas Geosci. 2013, 24, 450–455. [Google Scholar]
- Tian, H.; Zhang, S.C.; Liu, S.B.; Zhang, H. Determination of organic rich shale pore features by mercury injection and gas adsorption methods. Acta Pet. Sin. 2012, 33, 419–427. [Google Scholar]
- Chalmers, G.R.L.; Bustin, R.M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of North eastern British Columbia, Canada. Int. J. Coal Geol. 2007, 70, 223–239. [Google Scholar] [CrossRef]
- Bustin, R.M.; Bustin, A.; Ross, D.; Chalmers, G.; Murthy, V.; Chikatamarla, L.; Cui, A. Shale gas opportunities and challenges. Search Discov. Artic. 2009, 1, 20–23. [Google Scholar]
- Medina-Rodriguez, B.X.; Alvarado, V. Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization. Energies 2021, 14, 2880. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Les Objects Fractals: Forme, Hasard et Dimension; Flammarion: Paris, France, 1975. [Google Scholar]
- Hansen, J.P.; Skjeltorp, A.T. Fractal pore space and rock permeability implications. Phys. Rev. B 1988, 38, 2635–2638. [Google Scholar] [CrossRef] [PubMed]
- Krohn, C.E. Sandstone fractal and Euclidean pore volume distributions. J. Geophys. Res. Earth Planets 1988, 93, 3286–3296. [Google Scholar] [CrossRef]
- Pape, H.; Clauser, C.; Iffland, J. Permeability prediction based on fractal porespacegeometry. Geophysics 1999, 64, 1447–1460. [Google Scholar] [CrossRef]
- Pfeifer, P.; Avnir, D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 1983, 79, 3558–3565. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett. 1985, 54, 1325–1328. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Ning, Z.F.; Liu, H.Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Hazra, B.; Wood, D.A.; Vishal, V.; Varma, A.K.; Sakha, D.; Singh, A.K. Porosity controls and fractal disposition of organic-rich Permian shales using low-pressure adsorption techniques. Fuel 2018, 220, 837–848. [Google Scholar] [CrossRef]
- Pan, S.X.; Zha, M.; Gao, C.H.; Qu, J.X.; Ding, X.J. Pore structure and fractal characteristics of organic-rich lacustrine shales of the Kongdian Formation, Cangdong Sag, Bohai Bay Basin. Front. Earth Sci. 2021, 9, 760583. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, C.S.; Wang, P.J.; Gao, Y.F.; Huang, Y.J.; Zou, C.C. Progress on Continental Scientific Drilling Project of Cretaceous Songliao Basin (SK-1 and SK-2). Sci. Bull. 2019, 64, 73–75. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.S.; Feng, Z.G.; Zhang, L.M.; Huang, Y.J.; Cao, K.; Wang, P.J.; Zhao, B. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 385, 17–30. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Jia, C.Z.; Xie, X.N.; Zhang, S.; Feng, Z.H.; Cross, T.A. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Res. 2010, 22, 79–95. [Google Scholar] [CrossRef]
- Wang, P.J.; Mattern, F.; Didenko, N.A.; Zhu, D.F.; Singer, B.; Sun, X.M. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth-Sci. Rev. 2016, 159, 82–102. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, C.S.; Liu, Z.F.; Du, X.J.; Ibarra, D.E. Diagenetic and Paleoenvironmental Controls on Late Cretaceous Clay Minerals in the Songliao Basin, Northeast China. Clays Clay Miner. 2015, 63, 469–484. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Wang, C.S.; Graham, S.; Koeberl, C.; Dong, H.L.; Huang, Y.J.; Gao, Y. Continental Scientific Drilling Project of Cretaceous Songliao Basin: Scientific objectives and drilling technology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 385, 6–16. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.J.; Chai, H.; Li, Y.C.; Zhou, Y.J. Pore structure characterization for a continental lacustrine shale parasequence based on fractal theory. Fractals 2019, 27, 1940006. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.L.; Wang, Y.P.; Chen, C.S.; Pan, Y.H. Application of the Grain-Based Rock-Eval Pyrolysis Method to Evaluate Hydrocarbon Generation, Expulsion, and Retention of Lacustrine Shale. Front. Earth Sci. 2022, 10, 921806. [Google Scholar] [CrossRef]
- He, W.Y.; Meng, Q.A.; Lin, T.F.; Wang, R.; Liu, X.; Li, X.; Yang, F.; Sun, G.X. Evolution of in-situ permeability of low-maturity shale with the increasing temperature, Cretaceous Nenjiang Formation, northern Songliao Basin, NE China. Pet. Explor. Dev. 2022, 49, 453–464. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Tang, Y.J.; He, D.X.; Sun, P.; Zou, X.Y. Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry. Appl. Clay Sci. 2020, 196, 105758. [Google Scholar] [CrossRef]
- Wang, M.; Xue, H.T.; Tian, S.S.; Wilkins, R.W.T.; Wang, Z.W. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Mar. Pet. Geol. 2015, 67, 144–153. [Google Scholar] [CrossRef]
- Gao, Y.F.; Wang, P.J.; Cheng, R.H.; Wang, G.D.; Wan, X.Q.; Wu, H.Y.; Wang, S.X.; Liang, W.L. Centimeter-scale sedimentary sequence description of Upper Cretaceous Nenjiang Formation (lower numbers 1&2): Lithostratigraphy, facies and cyclostratigraphy, based on the scientific drilling (SK1) borehole in the Songliao Basin. Earth Sci. Front. 2011, 18, 195–217. [Google Scholar]
- Gao, Y.; Ibarra, D.E.; Wang, C.; Caves, J.K.; Chamberlain, C.P.; Graham, S.A.; Wu, H. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology 2015, 43, 287–290. [Google Scholar] [CrossRef]
- Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.M.; Horsfield, B. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin). Int. J. Coal. Geol. 2012, 103, 3–11. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.B.; Mastalerz, M.; Bustin, R.M.; Radlinski, A.P.; Blach, T.P. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T.W. Organic matter-hosted pore system, Marcellus Formtion (Devonian), Pennsylvania. Am. Assoc. Pet. Geol. Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radlinski, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Mastalerz, M.; He, L.L.; Melnichenko, Y.B.; Rupp, J.A. Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/USANS Techniques. Energy Fuels 2012, 26, 5109–5120. [Google Scholar] [CrossRef]
- Schmitt, M.; Fernandes, C.P.; Neto, J.A.B.D.; Wolf, F.B.; dos Santos, V.S.S. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Mar. Pet. Geol. 2013, 39, 138–149. [Google Scholar] [CrossRef]
- Tian, H.; Pan, L.; Xiao, X.M.; Wilkins, R.W.T.; Meng, Z.P.; Huang, B.J. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N-2 adsorption and FE-SEM methods. Mar. Pet. Geol. 2013, 48, 8–19. [Google Scholar] [CrossRef]
- Liu, C.; Shi, B.; Zhou, J.; Tang, C.S. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials. Appl. Clay Sci. 2011, 54, 97–106. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, D.; Pan, Z.; Yao, Y.B.; Li, J.Q.; Qiu, Y.K. Pore structure and its impact on CH_4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Tang, D.Z.; Tang, S.H.; Huang, W.H. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Liu, J.Z.; Zhu, J.F.; Cheng, J.; Zhou, J.H.; Cen, K.F. Pore structure and fractal analysis of Ximeng lignite under microwave irradiation. Fuel 2015, 146, 41–50. [Google Scholar] [CrossRef]
- Wang, B.X. Medical Statistics and SAS Application; Shanghai Jiao Tong University Press: Shanghai, China, 2009; Volume 95, p. 135. ISBN 978-7-313-04844-8. [Google Scholar]
- Wilson, E.B. Statistical Inference. Science 1926, 63, 289–296. [Google Scholar] [CrossRef]
- Bishop, T.F.A.; Lark, R.M. The geostatistical analysis of experiments at the landscape-scale. Geoderma 2006, 133, 87–106. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewsha, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Hazra, B.; Wood, D.A.; Vishal, V.; Singh, A.K. Pore Characteristics of Distinct Thermally Mature Shales: Influence of Particle Size on Low-Pressure CO2 and N2 Adsorption. Energy Fuels 2018, 32, 8175–8186. [Google Scholar] [CrossRef]
- Liu, L.H.; Gu, M.; Xian, X.F. Effect of pore structure and surface chemical properties on adsorption properties of activated carbon. Chin. J. Environ. Eng. 2012, 4, 1299–1304. [Google Scholar]
- Tang, X.L.; Jiang, Z.X.; Li, Z.; Gao, Z.Y.; Bai, Y.Q.; Zhao, S.; Feng, J. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 464–473. [Google Scholar] [CrossRef]
- Qi, H.; Ma, J.; Wong, P.Z. Adsorption isotherms of fractal surfaces. Colloids Surf. A 2002, 206, 401–407. [Google Scholar] [CrossRef]
- Pyun, S.I.; Rhee, C.K. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures. Electrochim. Acta 2004, 49, 4171–4180. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, Y.; Wang, G.; Guan, X.; Zhou, X.; Liu, J. Fractal Analysis and Classification of Pore Structures of High-Rank Coal in Qinshui Basin, China. Energies 2022, 15, 6766. [Google Scholar] [CrossRef]
- Rigby, S.P. Predicting surface diffusivities of molecules from equilibrium adsorption isotherms. Colloid Surf. A 2005, 262, 139–149. [Google Scholar] [CrossRef]
- Cao, X.M.; Gao, Y.; Cui, J.W.; Han, S.B.; Kang, L.; Song, S.; Wang, C.S. Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China. Energies 2020, 13, 2027. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.P.; Wood, D.A.; Singh, V.; Hazra, B.; Singh, P.K. Impact of Particle Crush-Size and Weight on Rock-Eval S2, S4, and Kinetics of Shales. J. Earth Sci. China 2022, 33, 513–524. [Google Scholar] [CrossRef]
- Hazra, B.; Dutta, S.; Kumar, S. TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: Critical consideration and insights. Int. J. Coal. Geol. 2017, 169, 106–115. [Google Scholar] [CrossRef]
- Carvajal-Ortiz, H.; Gentzis, T. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited. Int. J. Coal Geol. 2017, 152, 113–122. [Google Scholar] [CrossRef]
- Cornford, C.; Gardner, P.; Burgess, C. Geochemical truths in large data sets. I: Geochemical screening data. Org. Geochem. 1998, 29, 519–530. [Google Scholar] [CrossRef]
Pore | Length (μm) | Width (μm) | Average Pore Size (nm) |
---|---|---|---|
1 | 0.245308312 | 0.160560518 | 202.9344146 |
2 | 0.55289136 | 0.387186408 | 470.0388843 |
3 | 0.320037996 | 0.275904161 | 297.9710785 |
4 | 0.191697886 | 0.081227918 | 136.4629019 |
5 | 0.141878096 | 0.084477035 | 113.1775655 |
6 | 0.14810557 | 0.104242495 | 126.1740323 |
⋯⋯ | ⋯⋯ | ⋯⋯ | ⋯⋯ |
Porosity | Number | Pore Size (nm) | Average | Average | ||
---|---|---|---|---|---|---|
Max | Min | Average | Shape Factor | Probability Entropy | ||
Inorganic pores | 6321 | 3083 | 103 | 225 | 0.54 | 0.926294 |
Organic pores | 161 | 1616 | 112 | 329 | 0.56 | 0.628375 |
Sample | Average Pore Diameter (nm) | BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Hysteresis Loop Type |
---|---|---|---|---|
SK1-S-1 | 8.73 | 44 | 0.0750 | H3 |
SK1-S-2 | 9.80 | 44 | 0.0881 | H3 |
SK1-S-3 | 9.58 | 31 | 0.0756 | H3 |
SK1-S-4 | 9.21 | 40 | 0.0883 | H3 |
SK1-S-5 | 10.01 | 31 | 0.0798 | H3 |
SK1-S-6 | 8.74 | 38 | 0.0776 | H3 |
SK1-S-7 | 9.62 | 42 | 0.0935 | H3 |
SK1-S-8 | 9.77 | 32 | 0.0781 | H3 |
SK1-S-9 | 8.84 | 35 | 0.0743 | H3 |
SK1-S-10 | 10.52 | 22 | 0.0636 | H3 |
SK1-S-11 | 14.61 | 10 | 0.0444 | H3 |
SK1-S-12 | 8.26 | 50 | 0.0944 | H3 |
SK1-S-13 | 8.22 | 66 | 0.1187 | H3 |
SK1-S-14 | 8.51 | 41 | 0.0752 | H3 |
SK1-S-15 | 15.03 | 10 | 0.0450 | H3 |
SK1-S-16 | 12.25 | 16 | 0.0580 | H3 |
Sample | P/P0 < 0.5 | P/P0 > 0.5 | ||||
---|---|---|---|---|---|---|
Fitting Equation | R2 | D1 | Fitting Equation | R2 | D2 | |
SK1-S-1 | y = −0.3826x + 2.6889 | 0.9983 | 2.6174 | y = −0.2818x + 2.6962 | 0.9991 | 2.7182 |
SK1-S-2 | y = −0.3904x + 2.6925 | 0.9998 | 2.6096 | y = −0.3156x + 2.6975 | 0.9988 | 2.6844 |
SK1-S-3 | y = −0.4956x + 2.3775 | 0.9999 | 2.5044 | y = −0.3411x + 2.4528 | 0.9961 | 2.6589 |
SK1-S-4 | y = −0.4541x + 2.6328 | 0.9998 | 2.5459 | y = −0.3229x + 2.6938 | 0.9978 | 2.6771 |
SK1-S-5 | y = −0.4915x + 2.3774 | 0.9998 | 2.5085 | y = −0.353x + 2.4526 | 0.9963 | 2.647 |
SK1-S-6 | y = −0.4544x + 2.5658 | 0.9997 | 2.5456 | y = −0.3038x + 2.6377 | 0.9969 | 2.6962 |
SK1-S-7 | y = −0.436x + 2.6787 | 0.9999 | 2.564 | y = −0.3181x + 2.733 | 0.9972 | 2.6819 |
SK1-S-8 | y = −0.4724x + 2.4215 | 0.9999 | 2.5276 | y = −0.332x + 2.4910 | 0.9969 | 2.668 |
SK1-S-9 | y = −0.4883x + 2.4726 | 0.9999 | 2.5117 | y = −0.3145x + 2.5566 | 0.9972 | 2.6855 |
SK1-S-10 | y = −0.5229x + 2.0487 | 0.9995 | 2.4771 | y = −0.365x + 2.1397 | 0.9952 | 2.635 |
SK1-S-11 | y = −0.5476x + 1.2553 | 0.9991 | 2.4524 | y = −0.4832x + 1.3124 | 0.9978 | 2.5168 |
SK1-S-12 | y = −0.4384x + 2.8529 | 0.9999 | 2.5616 | y = −0.2779x + 2.9299 | 0.9971 | 2.7221 |
SK1-S-13 | y = −0.4069x + 3.1168 | 0.9998 | 2.5931 | y = −0.2803x + 3.1884 | 0.9962 | 2.7197 |
SK1-S-14 | y = −0.4129x + 2.6306 | 0.9997 | 2.5872 | y = −0.2907x + 2.676 | 0.9996 | 2.7093 |
SK1-S-15 | y = −0.5594x + 1.2352 | 0.9988 | 2.4406 | y = −0.4964x + 1.2921 | 0.9953 | 2.5036 |
SK1-S-16 | y = −0.5533x + 1.6927 | 0.9979 | 2.4467 | y = −0.4323x + 1.8071 | 0.993 | 2.5677 |
Sample | Quartz | Potash Feldspar | Plagioclase | Calcite | Dolomite | Siderite | Pyrite | Clay |
---|---|---|---|---|---|---|---|---|
SK1-S-1 | 35.5 | 2.2 | 8.1 | 2.3 | 3.4 | / | 0.5 | 48 |
SK1-S-2 | 35.6 | 1.5 | 5.1 | 2.2 | 1.3 | / | 1.9 | 52.4 |
SK1-S-3 | 21.8 | 2 | 6.5 | 8.4 | 8.3 | / | 4.3 | 48.7 |
SK1-S-4 | 17.8 | 1.8 | 5.1 | 3.4 | 0 | / | 2.4 | 47.2 |
SK1-S-5 | 21.7 | 1.7 | 4.8 | 11.2 | 8.6 | / | 3.6 | 48.4 |
SK1-S-6 | 18.9 | 1.7 | 6.1 | 8.8 | 8.2 | 7.1 | 2.8 | 46.4 |
SK1-S-7 | 19.3 | 1.8 | 5.5 | 12.8 | 3.5 | 4.5 | 0.6 | 52 |
SK1-S-8 | 17 | 1.8 | 5.2 | 3.8 | 20.5 | / | 0.1 | 51.6 |
SK1-S-9 | 21.5 | 2.6 | 7.1 | 6.8 | 2.8 | 5.7 | 1.4 | 52.1 |
SK1-S-10 | 20.6 | 1.7 | 6.7 | 11.2 | 4.9 | / | 2.9 | 52 |
SK1-S-11 | 28.4 | 1.5 | 8.1 | 1.6 | 14.9 | / | 1.9 | 43.6 |
SK1-S-12 | 21.1 | 1.7 | 7.3 | 5.8 | 7.7 | / | 4.2 | 52.2 |
SK1-S-13 | 19.7 | 1.9 | 7.7 | 8.3 | 5.9 | / | 0.4 | 56.1 |
SK1-S-14 | 24.9 | 2.8 | 11.3 | 9 | 4.2 | / | 2.9 | 44.9 |
SK1-S-15 | 20.5 | 1.8 | 13.3 | 3.5 | 8.5 | / | 5.5 | 46.9 |
SK1-S-16 | 20.3 | 1.5 | 12 | 17.1 | 4.3 | / | 4.6 | 40.2 |
Sample | TOC (%) | Tmax (°C) | S1 (mg/g) | S2 (mg/g) | HI (mg/g TOC) | OSI (mg/g TOC) |
---|---|---|---|---|---|---|
SK1-S-1 | 1.68 | 435 | 0.14 | 4.59 | 273 | 8.33 |
SK1-S-2 | 1.46 | 438 | 0.15 | 5.41 | 371 | 10.27 |
SK1-S-3 | 4.94 | 442 | 0.60 | 42.83 | 867 | 12.15 |
SK1-S-4 | 1.70 | 436 | 0.31 | 9.16 | 539 | 18.24 |
SK1-S-5 | 2.73 | 439 | 0.55 | 18.58 | 681 | 20.15 |
SK1-S-6 | 1.91 | 439 | 0.28 | 12.18 | 638 | 14.66 |
SK1-S-7 | 2.10 | 441 | 0.31 | 13.22 | 630 | 14.76 |
SK1-S-8 | 2.01 | 438 | 0.30 | 12.70 | 632 | 14.93 |
SK1-S-9 | 1.93 | 434 | 0.41 | 11.57 | 599 | 21.24 |
SK1-S-10 | 3.92 | 439 | 0.94 | 29.05 | 741 | 23.98 |
SK1-S-11 | 8.74 | 441 | 2.88 | 75.41 | 863 | 32.95 |
SK1-S-12 | 1.75 | 439 | 0.26 | 9.48 | 542 | 14.86 |
SK1-S-13 | 0.30 | 439 | 0.04 | 0.39 | 131 | 13.42 |
SK1-S-14 | 0.64 | 441 | 0.05 | 1.55 | 244 | 7.87 |
SK1-S-15 | 7.70 | 441 | 3.38 | 75.05 | 975 | 43.90 |
SK1-S-16 | 7.85 | 443 | 2.06 | 69.78 | 889 | 26.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, T.; Kang, L.; Zhang, Y.; Gao, Y. Pore Fractal Characteristics of Lacustrine Shale of Upper Cretaceous Nenjiang Formation from the Songliao Basin, NE China. Appl. Sci. 2023, 13, 4295. https://doi.org/10.3390/app13074295
Dong T, Kang L, Zhang Y, Gao Y. Pore Fractal Characteristics of Lacustrine Shale of Upper Cretaceous Nenjiang Formation from the Songliao Basin, NE China. Applied Sciences. 2023; 13(7):4295. https://doi.org/10.3390/app13074295
Chicago/Turabian StyleDong, Tian, Lei Kang, Yifan Zhang, and Yuan Gao. 2023. "Pore Fractal Characteristics of Lacustrine Shale of Upper Cretaceous Nenjiang Formation from the Songliao Basin, NE China" Applied Sciences 13, no. 7: 4295. https://doi.org/10.3390/app13074295
APA StyleDong, T., Kang, L., Zhang, Y., & Gao, Y. (2023). Pore Fractal Characteristics of Lacustrine Shale of Upper Cretaceous Nenjiang Formation from the Songliao Basin, NE China. Applied Sciences, 13(7), 4295. https://doi.org/10.3390/app13074295