Physicochemical and Sensory Properties of Bahulu and Chocolate Mousse Developed from Canned Pulse and Vegetable Liquids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Product Development
2.2.1. Bahulu
2.2.2. Chocolate Mousse
2.3. Texture Profile Analysis of Bahulu
2.4. Viscosity of Chocolate Mousse
2.5. Proximate Analysis
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results and Discussions
3.1. Physicochemical and Sensory Properties of Bahulu
3.1.1. Texture Profile Analysis of Bahulu
3.1.2. Proximate Composition of Bahulu
3.1.3. Sensory Properties of Bahulu
3.2. Physicochemical and Sensory Properties of Chocolate Mousse
3.2.1. Viscosity of Chocolate Mousse
3.2.2. Proximate Composition of Chocolate Mousse
3.2.3. Sensory Properties of Chocolate Mousse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, G.M. Aerated Foods. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 51–60. [Google Scholar]
- Shin, M.; Han, Y.; Ahn, K. The influence of the time and temperature of heat treatment on the allergenicity of egg white proteins. Allergy Asthma Immunol. Res. 2013, 5, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Nastaj, M.; Mleko, S.; Terpiłowski, K.; Tomczy´nska-Mleko, M. Effect of Sucrose on Physicochemical Properties of High-Protein Meringues Obtained from Whey Protein Isolate. Appl. Sci. 2021, 11, 4764. [Google Scholar] [CrossRef]
- Orrego, M.; Troncoso, E.; Zúñiga, R.N. Aerated whey protein gels as new food matrices: Effect of thermal treatment over microstructure and textural properties. J. Food Eng. 2015, 163, 37–44. [Google Scholar] [CrossRef]
- Duquenne, B.; Vergauwen, B.; Capdepon, C.; Boone, M.A.; De Schryver, T.D.; Hoorebeke, L.V.; Weyenberg, S.V.; Stevens, P.; Block, J.D. Stabilising frozen dairy mousses by low molecular weight gelatin peptides. Food Hydrocoll. 2016, 60, 317–323. [Google Scholar] [CrossRef]
- Rosniyana, A.; Hazila, K.K.; Hashifah, M.A.; Norin, S.A.S.; Zain, A.M. Nutritional composition and sensory properties of kuih baulu incorporated stabilised rice bran. J. Trop. Agric. Food Sci. 2011, 39, 1–9. [Google Scholar]
- Murray, B.S. Recent developments in food foams. Curr. Opin. Colloid Interface Sci. 2020, 50, 101394. [Google Scholar] [CrossRef]
- Duan, X.; Li, J.; Zhang, Q.; Zhao, T.; Li, M.; Xu, X. Effect of a multiple freeze-thaw process on structural and foaming properties of individual egg white proteins. Food Chem. 2017, 228, 243–248. [Google Scholar] [CrossRef]
- Lomakina, K.G.; Míková, K. A study of the factors affecting the foaming properties of egg white—A review. Czech J. Food Sci. 2018, 24, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Kar, S. As Malaysia Faces Egg Shortage, PM Anwar Ibrahim Advises People against Panic Buying. Republicworld.com. Available online: https://www.republicworld.com/world-news/rest-of-the-world-news/as-malaysia-faces-egg-shortage-pm-anwar-ibrahim-advises-people-against-panic-buying-articleshow.html (accessed on 23 February 2023).
- Shim, Y.Y.; Mustafa, R.; Shen, J.; Ratanapariyanuch, K.; Reaney, M. Composition and Properties of Aquafaba: Water Recovered from Commercially Canned Chickpeas. J. Vis. Exp. 2018, 132, 56305. [Google Scholar]
- Amagliani, L.; Silva, J.V.C.; Saffon, M.; Dombrowski, J. On the foaming properties of plant proteins: Current status and future opportunities. Trends Food Sci. Technol. 2021, 118, 261–272. [Google Scholar] [CrossRef]
- Stantiall, S.E.; Dale, K.J.; Calizo, F.S.; Serventi, L. Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. Eur. Food Res. Technol. 2017, 244, 97–104. [Google Scholar] [CrossRef]
- Mustafa, R.; He, Y.; Shim, Y.Y.; Reaney, M.J.T. Aquafaba, wastewater from chickpea canning, functions as an egg replacer in sponge cake. Int. J. Food Sci. Technol. 2018, 53, 247–2255. [Google Scholar] [CrossRef]
- Donatus, F.; Sintang, M.D.; Julmohammad, N.; Noorakmar, A.W. Potential application of unconsumed liquid from commercial canned food products in fabrication and characterisation of non-dairy edible foam. Int. J. Agric. For. Plant. 2020, 10. [Google Scholar]
- Treat Dreams. Chocolate Mousse (without Heavy Cream). Available online: https://treatdreams.com/chocolate-mousse-without-heavy-cream/ (accessed on 21 January 2023).
- Hosseini Ghaboos, S.H.; Seyedain Ardabili, S.M.; Kashaninejad, M. Physicochemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour. Int. Food Res. J. 2018, 25, 854–860. [Google Scholar]
- Stable Micro Systems. Texture: Measure and Analyse Properties Stable Micro Systems. Available online: https://www.stablemicrosystems.com/TextureAnalysisProperties.html (accessed on 23 January 2023).
- Sheng, L.; Wang, Y.; Chen, J.; Zou, J.; Wang, Q.; Ma, M. Influence of high-intensity ultrasound on foaming and structural properties of egg white. Food Res. Int. 2018, 108, 604–610. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Fernandes, S.S.; Filipini, G.; Salas-Mellado, M.d.l.M. Development of cake mix with reduced fat and high practicality by adding chia mucilage. Food Biosci. 2021, 42, 101148. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Funami, T.; Nakauma, M. Instrumental food texture evaluation in relation to human perception. Food Hydrocoll. 2022, 124, 107253. [Google Scholar] [CrossRef]
- He, Y.; Meda, V.; Reaney, M.J.T.; Mustafa, R. Aquafaba, a new plant-based rheological additive for food applications. Trends Food Sci. Technol. 2021, 111, 27–42. [Google Scholar] [CrossRef]
- Hwang, J.; Shyu, Y.S.; Yeh, L.; Sung, W. Study on Sponge Cake Qualities Made from Hen, Duck and Ostrich Eggs. J. Food Nutr. Res. 2018, 6, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, S.; Vardhanabhuti, B. Foaming properties of whey protein isolate and λ-carrageenan mixed systems. J. Food Sci. 2015, 80, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Paula, A.M.; Conti-Silva, A.C. Texture profile and correlation between sensory and instrumental analyses on extruded snacks. J. Food Eng. 2014, 121, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Hettiararchy, N.S.; Horax, R. Quality and estimated glycemic profile of baked protein-enriched corn chips. J. Food Sci. Technol. 2019, 56, 2855–2862. [Google Scholar] [CrossRef]
- Lu, R.; Cen, H. 8 Non-destructive methods for food texture assessment. In Instrumental Assessment of Food Sensory Quality; Woodhead Publishing: Sawston, UK, 2013; pp. 230–254. [Google Scholar]
- Milner, L.; Kerry, J.P.; O’Sullivan, M.G.; Gallagher, E. Physical, textural, and sensory characteristics of reduced sponge cakes, incorporated with clean-label sugar-replacing alternative ingredients. Innov. Food Sci. Emerg. Technol. 2020, 59, 102235. [Google Scholar] [CrossRef]
- Faber, T.J.; Jaishankar, A.; McKinley, G.H. Describing the firmness, springiness, and rubberiness of food gels using fractional calculus. Part II: Measurements on semi-hard cheese. Food Hydrocoll. 2017, 62, 325–339. [Google Scholar] [CrossRef]
- StudyCorgi. Effects of Different Compounds on Egg White Foam Stability. Available online: https://studycorgi.com/effects-of-different-compounds-on-egg-white-foam-stability/ (accessed on 1 February 2023).
- Nishinari, K.; Turcanu, M.; Nakauma, M.; Fang, Y. Role of fluid cohesiveness in safe swallowing. NPJ Sci. Food 2019, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamedi, F.; Mohebbi, M.; Shahidi, F.; Azarpazhooh, E. Ultrasound assisted osmotic treatment of model food impregnated with pomegranate peel phenolic compounds: Mass transfer, texture and phenolic evaluations. Food Bioprocess. Technol. 2018, 11, 1061–1074. [Google Scholar] [CrossRef]
- Kasapis, S.; Bannikova, A. Chapter 2—Rheology and food microstructure. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Ahmed, J., Ptaszek, P., Basu, S., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 7–46. [Google Scholar]
- Herranz, B.; Canet, W.; Jimenez, M.J.; Fuentes, R.; Alvarez, M.D. Characterisation of chickpea flour-based gluten-free batters and muffins with added biopolymers: Rheological, physical and sensory properties. Int. J. Food Sci. Technol. 2016, 51, 1087–1098. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, N.F.; Tehrani, M.M. Influence of different emulsifiers on characteristics of eggless cake containing soy milk: Modeling of physical and sensory properties by mixture experimental design. J. Food Sci. Technol. 2014, 51, 1697–1710. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, R.V.C.; Fernandes, A.; Heleno, S.A.; Rodrigues, P.; Gonzalez-Paramas, A.M.; Barros, L.; Ferreira, I. Physicochemical characterization and microbiology of wheat and rye flours. Food Chem. 2019, 280, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Moore, S. Why is Moisture Content Analysis of Food Important? Available online: https://www.news-medical.net/life-sciences/Why-is-Moisture-Content-Analysis-of-Food-Important.aspx# (accessed on 29 January 2023).
- Ludwig, D.S.; Hu, F.B.; Tappy, L. Dietary carbohydrate: Role of quality and quantity in chronic disease. BMJ 2018, 361, 2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanimah, M.; Ibrahim, E. Effect of pH, carbohydrates, and NaCl on functional properties of whey proteins. J. Sustain. Agric. Sci. 2018, 44, 93–99. [Google Scholar] [CrossRef]
- Osilla, E.V.; Safadi, A.O.; Sharma, S. Calories. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499909/ (accessed on 30 January 2023).
- Nur Afifah, M.J.; Aishah, B. Effect of maltodextrin substitution on physicochemical and sensory properties of Malay traditional cake ‘Bahulu’. Int. J. Eng. Technol. 2018, 7, 239–243. [Google Scholar] [CrossRef]
- Zaitoun, M.; Ghanem, M.; Harphoush, S. Sugars: Types and their functional properties in food and human health. Int. J. Public Health Research. 2018, 6, 93–99. [Google Scholar]
- Malnic, B.S.; Saraiva, L.R. Odor coding in the mammalian olfactory epithelium. Cell Tissue Res. 2021, 383, 445–456. [Google Scholar]
- Péneau, S.; Hoehn, E.; Roth, H.-R.; Escher, F.; Nuessli, J. Importance and consumer perception of freshness of apples. Food Qual. Prefer. 2006, 17, 9–19. [Google Scholar] [CrossRef]
- Clemson.edu. Available Moisture in Foods: What Is It Anyway? Available online: https://www.clemson.edu/extension/food/canning/canning-tips/39available-moisture.html (accessed on 23 January 2023).
- Huppert, T. Milk Foam: Creating Texture and Stability. Available online: https://scanews.coffee/2014/09/15/milk-foam-creating-texture-and-stability/ (accessed on 23 January 2023).
- Conti-Silva, A.C.; Ichiba, A.K.T.; Silveira, A.L.d.; Albano, K.M.; Nicoletti, V.R. Viscosity of liquid and semisolid materials: Establishing correlations between instrumental analyses and sensory characteristics. J. Text. Stud. 2018, 49, 569–577. [Google Scholar] [CrossRef]
- Gray, D.; Abdel-Aal, E.M.; Seetharaman, K.; Kakuda, Y. Differences in viscosity and textural properties of selected barley cultivars as influenced by pearling and cooking. Food Chem. 2010, 120, 402–409. [Google Scholar] [CrossRef]
- Akkouche, Z.; Aissat, L.; Madani, K. Effect of heat on egg white protein. In International Conference on Applied Sciences; IntechOpen: London, UK, 2012; pp. 407–413. [Google Scholar]
- Vieira, J. Chocolate Aeration—Art or Science? New Food Magazine. Available online: https://www.newfoodmagazine.com/article/5415/chocolate-aeration-art-or-science/ (accessed on 29 January 2023).
- Li, X.; Li, J.; Chang, C.; Wang, C.; Zhang, M.; Su, Y.; Yang, Y. Foaming characterization of fresh egg white proteins as a function of different proportions of egg yolk fractions. Food Hydrocoll. 2019, 90, 118–125. [Google Scholar] [CrossRef]
- Ho, T.M.; Bhandari, B.; Bansal, N. Influence of milk fat on foam formation, foam stability and functionality of aerated dairy products. In Dairy Fat Products and Functionality; Springer: Cham, Switzerland, 2020; pp. 583–606. [Google Scholar]
- Massoud, R.; Hosseini, A.H.; Massoud, A. Functional properties of food proteins; gelation and stable foam. In Proceedings of the 6th International Conference on Science and Engineering (ICES), Paris, France, 7 December 2017; pp. 1–8. [Google Scholar]
- Hou, Q.; Xiwen, W. Effect of fiber surface characteristics on foam properties. Cellulose 2018, 25, 3315–3325. [Google Scholar] [CrossRef]
- Mozaffarian, D. Food and weight gain: Time to end our fear of fat. Lancet Diabetes Endocrinol. 2016, 4, 633–635. [Google Scholar] [CrossRef] [PubMed]
Materials | Manufacturers | Symbols |
---|---|---|
Button Mushroom | Myxo, China | Vegetable A, Bahulu A, Mousse A |
Straw Mushroom | Rex, Malaysia | Vegetable D, Bahulu D, Mousse D |
Green Pea | Sunstar, Malaysia | Pulses N, Bahulu N, Mousse N |
Green Pea | Marina, Malalysia | Pulses P, Bahulu P, Mousse P |
Lentils | Cirio, Italy | Pulses R, Bahulu R, Mousse R |
Chickpea | Coppola, Italy | Pulses X, Bahulu X, Mousse X |
Sample | Nutritional Composition | |||||
---|---|---|---|---|---|---|
Protein (g) | Fat (g) | Carbohydrate (g) | Salt (mg) | Fiber (g) | Sugar (g) | |
Vegetable A (Button Mushroom) | 1 | 0 | 4 | 330 | 2 | 2.2 |
Vegetable D (Straw Mushroom) | 4 | 1 | 6.3 | |||
Pulse N (Green Pea) | 19 | 0 | 60 | 2400 | 25 | |
Pulse P (Green Pea) | 5 | 1 | 10 | 4 | ||
Pulse R (Lentils) | 5.9 | 0.9 | 600 | 4.2 | ||
Pulse X (Chickpea) | 5.4 | 1.6 | 10.8 | 25 | 5.6 |
Material | Weight (g) |
---|---|
All-Purpose Flour | 100 |
Baking Powder | 7 |
Liquid Egg Whites | 110 |
Sugar | 25 |
Material | Weight (g) |
---|---|
Dark Chocolate | 150 |
Butter | 50 |
Liquid Egg Whites | 110 |
Sugar | 25 |
Lemon Zest | 5 |
Sample | Hardness (g) | Fracturability | Adhesiveness (mJ) | Springiness (mm) | Cohesiveness | Chewiness (mJ) |
---|---|---|---|---|---|---|
Control | 4.03 ± 0.01 b | 4.11 ± 0.04 a,b,c | −0.08 ± 0.03 e | 0.99 ± 0.01 e | 0.87 ± 0.02 c | 3.49 ± 0.09 f |
Bahulu A | 3.91 ± 0.01 a | 4.03 ± 0.01 a | −1.89 ± 0.02 c | 0.38 ± 0.04 a | 0.57 ± 0.02 a,b | 0.89 ± 0.02 a |
Bahulu D | 4.11 ± 0.02 b,c | 4.22 ± 0.07 b,c | −2.52 ± 0.02 a | 0.61 ± 0.05 b | 0.51 ± 0.01 a | 1.34 ± 0.02 c |
Bahulu N | 4.03 ± 0.01 b | 4.13 ± 0.01 a,b,c | −0.04 ± 0.02 e | 0.99 ± 0.01 e | 0.86 ± 0.01 c | 3.49 ± 0.09 f |
Bahulu P | 4.08 ± 0.12 b,c | 4.13 ± 0.13 a,b,c | −2.19 ± 0.08 b | 0.58 ± 0.08 b | 0.51 ± 0.05 a | 1.19 ± 0.04 b |
Bahulu R | 4.15 ± 0.03 c | 4.23 ± 0.01 c | −0.01 ± 0.01 e | 0.83 ± 0.02 d | 0.60 ± 0.05 b | 2.18 ± 0.06 e |
Bahulu X | 4.10 ± 0.09 b,c | 4.09 ± 0.08 a,b | −1.56 ± 0.06 d | 0.73 ± 0.05 c | 0.55 ± 0.07 a,b | 1.92 ± 0.16 d |
Sample | Protein (%) | Fat (%) | Ash (%) | Fiber (%) | Moisture (%) | Carbohydrate (%) | Caloric Value (kcal) |
---|---|---|---|---|---|---|---|
Bahulu Control | 10.43 ± 0.31 c | 0.49 ± 0.01 b | 4.21 ± 0.02 a | 0.22 ± 0.01 a | 35.40 ± 0.01 c | 49.26 ± 0.31 a | 243.13 ± 0.20 c |
Bahulu A | 0.35 ± 0.04 a | 1.24 ± 0.03 d | 4.42 ± 0.01 b | 0.20 ± 0.02 a | 36.45 ± 0.02 d | 57.34 ± 0.05 d | 241.88 ± 0.20 b |
Bahulu D | 0.44 ± 0.01 a | 1.26 ± 0.01 d | 4.43 ± 0.02 b | 0.20 ± 0.01 a | 36.43 ± 0.01 d | 57.23 ± 0.02 d | 242.01 ± 0.09 b |
Bahulu N | 6.83 ± 0.26 b | 0.09 ± 0.01 a | 4.49 ± 0.05 c | 0.22 ± 0.01 a | 35.42 ± 0.02 c | 52.95 ± 0.29 b | 239.95 ± 0.14 a |
Bahulu P | 0.67 ± 0.49 a | 1.29 ± 0.09 d | 4.52 ± 0.02 c | 0.22 ± 0.01 a | 36.43 ± 0.01 d | 56.90 ± 0.57 d | 241.87 ± 0.37 b |
Bahulu R | 6.58 ± 0.54 b | 0.06 ± 0.02 a | 4.45 ± 0.01 bc | 0.22 ± 0.01 a | 34.05 ± 0.01 b | 54.64 ± 0.50 c | 245.44 ± 0.03 d |
Bahulu X | 6.70 ± 0.36 b | 0.71 ± 0.01 c | 4.20 ± 0.03 a | 0.21 ± 0.01 a | 33.58 ± 0.01 a | 55.59 ± 0.37 c | 251.57 ± 0.15 e |
Sample | Appearance | Color | Odor | Taste | Texture | Overall Acceptability |
---|---|---|---|---|---|---|
Bahulu Control | 6.30 ± 1.86 a | 6.30 ± 2.00 b | 6.43 ± 1.53 a | 6.60 ± 1.53 b | 6.20 ± 1.64 a | 7.35 ± 1.19 a |
Bahulu A | 6.15 ± 1.70 a | 6.23 ± 2.07 b | 6.53 ± 1.57 a | 6.60 ± 1.53 b | 6.03 ± 1.54 a | 7.03 ± 1.46 a |
Bahulu D | 6.20 ± 1.80 a | 6.13 ± 2.03 b | 6.50 ± 1.59 a | 6.60 ± 1.53 b | 6.05 ± 1.54 a | 7.35 ± 1.19 a |
Bahulu N | 6.25 ± 2.00 a | 4.40 ± 2.05 a | 6.53 ± 1.62 a | 4.73 ± 2.69 a | 6.18 ± 1.57 a | 7.40 ± 0.93 a |
Bahulu P | 6.25 ± 2.00 a | 4.30 ± 2.07 a | 6.50 ± 1.59 a | 4.73 ± 2.69 a | 6.20 ± 1.56 a | 7.23 ± 1.19 a |
Bahulu R | 6.35 ± 1.90 a | 4.38 ± 2.08 a | 6.43 ± 1.53 a | 6.60 ± 1.53 b | 6.13 ± 1.59 a | 7.10 ± 1.53 a |
Bahulu X | 6.30 ± 1.86 a | 6.30 ± 2.00 b | 6.43 ± 1.53 a | 6.60 ± 1.53 b | 6.10 ± 1.61 a | 7.18 ± 1.24 a |
Sample | Viscosity (cP) |
---|---|
Mousse Control | 8005.00 ± 0.00 d |
Mousse A | 2238.33 ± 2.89 a |
Mousse D | 2778.33 ± 2.89 b |
Mousse N | 8004.33 ± 0.58 cd |
Mousse P | 8002.33 ± 1.53 cd |
Mousse R | 8001.67 ± 0.58 c |
Mousse X | 8004.33 ± 0.58 cd |
Sample | Protein (%) | Fat (%) | Ash (%) | Fiber (%) | Moisture (%) | Carbohydrate (%) | Caloric Value (kcal) |
---|---|---|---|---|---|---|---|
Mousse Control | 4.69 ± 1.18 c | 28.62 ± 0.01 b | 1.01 ± 0.01 c | 2.07 ± 0.12 a | 28.95 ± 0.01 b | 34.65 ± 1.15 c | 423.26 ± 0.01 b |
Mousse A | 0.80 ± 0.10 a | 49.04 ± 0.01 d | 0.88 ± 0.01 b | 2.06 ± 0.05 a | 27.70 ± 0.01 a | 19.53 ± 0.12 b | 531.60 ± 1.28 d |
Mousse D | 0.68 ± 0.50 a | 49.02 ± 0.02 d | 0.88 ± 0.02 b | 2.06 ± 0.04 a | 27.72 ± 0.01 a | 19.64 ± 0.52 b | 531.96 ± 2.18 d |
Mousse N | 1.90 ± 0.18 b | 25.31 ± 0.08 a | 0.80 ± 0.01 a | 2.10 ± 0.02 a | 30.01 ± 0.01 c | 39.89 ± 0.25 d | 403.88 ± 0.59 a |
Mousse P | 0.92 ± 0.06 ab | 49.07 ± 0.01 d | 0.79 ± 0.01 a | 2.02 ± 0.04 a | 27.71 ± 0.05 a | 19.50 ± 0.13 b | 530.55 ± 1.42 d |
Mousse R | 1.52 ± 0.43 ab | 48.03 ± 0.01 c | 1.01 ± 0.01 c | 2.08 ± 0.08 a | 30.00 ± 0.01 c | 17.36 ± 0.44 a | 514.44 ± 2.90 c |
Mousse X | 1.82 ± 0.17 b | 25.35 ± 0.01 a | 1.00 ± 0.01 c | 2.07 ± 0.06 a | 29.98 ± 0.02 c | 39.78 ± 0.13 d | 403.36 ± 0.81 a |
Sample | Appearance | Color | Odor | Taste | Texture | Overal Acceptability |
---|---|---|---|---|---|---|
Mousse Control | 6.30 ± 1.57 a | 6.85 ± 1.69 a | 6.08 ± 1.61 a | 7.18 ± 1.41 b | 6.18 ± 1.68 c | 7.40 ± 0.87 ab |
Mousse A | 6.00 ± 2.10 a | 6.90 ± 1.66 a | 5.98 ± 1.66 a | 7.18 ± 1.41 b | 4.95 ± 1.06 a | 7.65 ± 0.62 b |
Mousse D | 6.00 ± 2.10 a | 6.90 ± 1.66 a | 6.18 ± 1.71 a | 7.18 ± 1.41 b | 5.15 ± 1.19 b | 7.40 ± 0.87 ab |
Mousse N | 6.35 ± 1.56 a | 6.90 ± 1.66 a | 6.05 ± 1.61 a | 5.10 ± 2.66 a | 6.23 ± 1.69 c | 7.00 ± 1.55 a |
Mousse P | 6.30 ± 1.57 a | 6.90 ± 1.66 a | 6.03 ± 1.81 a | 5.10 ± 2.66 a | 6.20 ± 1.71 c | 7.65 ± 0.62 b |
Mousse R | 6.30 ± 1.57 a | 6.90 ± 1.66 a | 6.15 ± 1.63 a | 7.18 ± 1.41 b | 6.20 ± 1.73 c | 7.25 ± 1.26 ab |
Mousse X | 6.20 ± 1.52 a | 6.90 ± 1.66 a | 6.08 ± 1.61 a | 7.18 ± 1.41 b | 6.20 ± 1.70 c | 7.13 ± 1.22 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donatus, F.; Sintang, M.D.B.; Julmohammad, N.; Pindi, W.; Ab Wahab, N. Physicochemical and Sensory Properties of Bahulu and Chocolate Mousse Developed from Canned Pulse and Vegetable Liquids. Appl. Sci. 2023, 13, 4469. https://doi.org/10.3390/app13074469
Donatus F, Sintang MDB, Julmohammad N, Pindi W, Ab Wahab N. Physicochemical and Sensory Properties of Bahulu and Chocolate Mousse Developed from Canned Pulse and Vegetable Liquids. Applied Sciences. 2023; 13(7):4469. https://doi.org/10.3390/app13074469
Chicago/Turabian StyleDonatus, Floris, Mohd Dona Bin Sintang, Norliza Julmohammad, Wolyna Pindi, and Noorakmar Ab Wahab. 2023. "Physicochemical and Sensory Properties of Bahulu and Chocolate Mousse Developed from Canned Pulse and Vegetable Liquids" Applied Sciences 13, no. 7: 4469. https://doi.org/10.3390/app13074469
APA StyleDonatus, F., Sintang, M. D. B., Julmohammad, N., Pindi, W., & Ab Wahab, N. (2023). Physicochemical and Sensory Properties of Bahulu and Chocolate Mousse Developed from Canned Pulse and Vegetable Liquids. Applied Sciences, 13(7), 4469. https://doi.org/10.3390/app13074469