Organic Matter Structural Composition of Vascular Epiphytic Suspended Soils of South Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Setting
2.2. Sampling Procedure
2.3. Laboratory Analysis
3. Results and Discussion
3.1. General Characteristics
3.2. Elemental Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lefèvre, C.; Rekik, F.; Alcantara, V.; Wiese, L. Soil Organic Carbon: The Hidden Potential; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskov, A.K.; Abakumov, E.V.; Tiunov, A.V.; Kuznetsova, O.V.; Dubovikov, D.A.; Prilepsky, N.G.; Antipina, V.A.; Kuznetsov, A.N. Ageotropic aerial root-traps of nest epiphytes and their role in suspended soils forming. J. Gen. Biol. 2017, 78, 54–68. (In Russian) [Google Scholar]
- Khokhlova, O.S.; Myakshina, T.N.; Kuznetsov, A.N.; Gubin, S.V. Morphogenetic features of soils in the Cat Tien National Park, Southern Vietnam. Eurasian Soil Sci. 2017, 50, 158–175. [Google Scholar] [CrossRef]
- Eskov, A.K.; Prilepsky, N.G.; Antipina, V.A.; Abakumov, E.V.; Nguyen, V.T. Formation of epiphytic communities in forest plantations of South Vietnam. Russ. J. Ecol. 2020, 51, 208–216. [Google Scholar] [CrossRef]
- Chertov, O.G. Ecotopes of the Rainforest (on the Example of Vietnam); Nauka: Leningrad, Russia, 1985; 46p. [Google Scholar]
- Shaw, P. The use of inert pads to study Collembola of suspended soils. Soil Org. 2013, 85, 69–74. [Google Scholar]
- Eskov, A.K.; Viktorova, V.A.; Abakumov, E.; Zotz, G. Cellular Growth in Aerial Roots Differs from That in Typical Substrate Roots. Front. Plant Sci. 2022, 13, 894647. [Google Scholar] [CrossRef] [PubMed]
- Eskov, A.K.; Kolomeitseva, G.L. Vascular Epiphytes: Plants That Have Broken Ties with the Ground. Biol. Bull. Rev. 2022, 12, 304–333. [Google Scholar] [CrossRef]
- Chen, L.; Liu, W.; Wang, G. Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China. Ecol. Res. 2010, 25, 315–325. [Google Scholar] [CrossRef]
- Hofstede, R.G.M.; Wolf, J.H.D.; Benzing, D.H. Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 1993, 14, 37–45. [Google Scholar]
- Gargallo-Garriga, A. Tree Species and Epiphyte Taxa Determine the ‘Metabolomic niche’ of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest. Metabolites 2021, 11, 718. [Google Scholar] [CrossRef]
- Julian, D. Physical conditions regulate the fungal to bacterial ratios of a tropical suspended soil. Forests 2017, 8, 474. [Google Scholar]
- Eskov, A.K.; Zverev, A.O.; Abakumov, E.V. Microorganisms. Microbiomes in suspended soils of vascular epiphytes differ from terrestrial soil microbiomes and from each other. Microorganisms 2021, 9, 1033. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Rodina, O.A.; Eskov, A.K. Humification and Humic Acid Composition of Suspended Soil in Oligotrophous Environments in South Vietnam. Appl. Environ. Soil Sci. 2018, 2018, 1026237. [Google Scholar] [CrossRef] [Green Version]
- Orlov, D.S. Humus Acids of Soils and General Theory of Humification; MSU: Moscow, Russia, 1990. [Google Scholar]
- Lodygin, E.D. Structural and Functional Parameters of Humus Substances of Taiga and Tundra Soils in the European Northeast of Russia; RSAU: Moscow, Russia, 2016. [Google Scholar]
- Deshcherevskaya, O.A.; Avilov, V.K.; Din, B.Z.; Chan, K.H.; Kurbatova, Y.A. Modern climate of the Cat Tien National Park (southern Vietnam): Climatological data for ecological studies. Izv. Atmos. Ocean. Phys. 2013, 49, 819–838. [Google Scholar] [CrossRef]
- Van Krevelen, D.W. Studies of gas absorption. VI. A graphical representation for the efficiency of physical absorption. Recl. Trav. Chim. Pays-Bas 1950, 69, 503–508. [Google Scholar] [CrossRef]
- Orlov, D.S. Soil Humic Acids and General Theory Humification; Moscov State University: Moscow, Russia, 1990; p. 325. [Google Scholar]
- Gagarina, E.I. Micromorphological Method of Soil Investigation; St. Petersburg University: Saint Petersburg, Russia, 2004; 156p. (In Russian) [Google Scholar]
- Gerasimova, M.I.; Kovda, I.V.; Lebedeva, M.P.; Tursina, T.V. Micromorphological terms: The state of the art in soil microfabric research. Eurasian Soil Sci. 2011, 44, 804–817. [Google Scholar] [CrossRef]
- Stoops, G.; Eswaran, H. Soil micromorphology; Van Nostrands Reinhold Company: New York, NY, USA, 1986; 345p. [Google Scholar]
- Nadkarni, N.M. The nutritional effects of epiphytes on host trees with special reference to alteration of recipitation chemistry. Selbyana 1986, 9, 44–51. [Google Scholar]
- Kholodov, V.A.; Konstantinov, A.I.; Kudryavtsev, A.V.; Perminova, I.V. The structure of humic acids of zonal soils according to C-13 NMR spectroscopy data. Pochvovedenie 2011, 9, 1064–1073. [Google Scholar]
- Ejarque, E.; Abakumov, E. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth 2016, 7, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Rodina, O.A.; Abakumov, E.V.; Eskov, A.K.; Prilepskiy, N.G. Humic Substances Formation as a Result of Biogenic-Abiogenic Interactions in Epiphytic Structures of the South Vietnam Tropical Forest. In Processes and Phenomena on the Boundary between Biogenic and Abiogenic Nature; Frank-Kamenetskaya, O., Vlasov, D., Panova, E., Lessovaia, S., Eds.; Lecture Notes in Earth System Sciences; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Perminova, I.V.; Shirshin, E.A.; Zherebker, A.; Pipko, I.I.; Pugach, S.P.; Dudarev, O.; Nikolaev, E.; Grigoryev, A.; Shakhova, I.; Semiletov, P. Signatures of Molecular Unification and Progressive Oxidation Unfold in Dissolved Organic Matter of the Ob-Irtysh River System along Its Path to the Arctic Ocean. Sci. Rep. 2019, 9, 19487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Abakumov, E.; Fujitake, N.; Kosaki, T. Humus and Humic Acids of Luvisols nad Cambisol of Jiguli Ridges, Samara Region, Russia. Appl. Environ. Soil Sci. 2009, 2009, 671359. [Google Scholar] [CrossRef] [Green Version]
- Chukov, S.N.; Lodygin, E.D.; Abakumov, E.V. Application of 13C NMR Spectroscopy to the Study of Soil Organic Matter: A Review of Publications. Eurasian Soil Sci. 2018, 51, 889–900. [Google Scholar] [CrossRef]
- Polyakov, V.; Loiko, S.; Istigechev, G.; Lapidus, A.; Abakumov, E. Elemental and Molecular Composition of Humic Acids Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR Spectroscopy. Agronomy 2021, 11, 1998. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.-F.; Fritz, I.; Pietrasiak, N.; Matteodo, M.; Nadporozhskaya, M.; Juilleret, J.; Tatti, D.; Le Bayon, R.; Rothschild, R.; et al. Humusica 2, article 13: Para humus systems and forms. Appl. Soil Ecol. 2018, 122 Pt 2, 181–199. [Google Scholar] [CrossRef]
- Nebbioso, A.; Piccolo, A. Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acids. Anal. Chim. Acta 2012, 720, 77–90. [Google Scholar] [CrossRef]
- Bazilevich, N.I.; Titlyanova, A.A. Biotic Cycle on Five Continents: Nitrogen and Ash Elements in Natural Terrestrial Ecosystems; SO RAN Publishing House: Novosibirsk, Russia, 2008. [Google Scholar]
- Mergelov, N.; Mueller, C.W.; Prater, I.; Shorkunov, I.; Dolgikh, A.; Zazovskaya, E.; Shishkov, V.; Krupskaya, V.; Abrosimov, K.; Cherkinsky, A.; et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 2018, 8, 3367. [Google Scholar] [CrossRef] [Green Version]
- Abakumov, E.; Yaneva, R.; Polyakov, V.; Zhiyanski, M. Characterization of Humic Acids Isolated from Selected Soils of Livingston Island by CP/MAS 13C NMR and ESR Spectroscopy. Appl. Environ. Soil Sci. 2022, 2022, 7540077. [Google Scholar] [CrossRef]
- Krickov, I.; Lim, A.; Shirokova, L.; Korets, M.; Karlsson, J.; Pokrovsky, S. Environmental controllers for carbon emission and concentration patterns in Siberian rivers during different seasons. Sci. Total Environ. 2023, 859, 160202. [Google Scholar] [CrossRef]
- Polyakov, V.; Lupachev, A.; Gubin, S.; Abakumov, E. Soil Organic Matter of Tidal Marsh Permafrost-Affected Soils of Kolyma Lowland. Agronomy 2023, 13, 48. [Google Scholar] [CrossRef]
Location | Phu Quoc | Cat Tien | Bidoup |
---|---|---|---|
Mean annual precipitation | 2880 mm | 2470 mm | 1860 mm * |
Dry season | January–February | November–April | Not pronounced |
Mean annual temperature | 27.1 °C | 26.2 °C | 18.2 °C |
Soil | Folic Arenosol, Stagnic | Dystric Skeletic Rhodic Cambisols and Skeletic Grey Umbrisols | Loamic Folic Ferralsols |
Sample Code | Short Description | Height of Sampling, m | pH of Grounded Material | Ash, % |
---|---|---|---|---|
1-1 | One tree | 2 | 3.00 | 0.20 |
1-2 | One tree | 4 | 3.50 | 0.37 |
1-3 | One tree | 6 | 3.20 | 0.45 |
1-4 | One tree | 8 | 2.80 | 0.42 |
2-1 | Suspended soil of Bidup, mountain massive (Bryophyta) | 4–5 | 3.10 | 0.26 |
2-2 | Nest of the fern Asplenium nidus (Cat Tien park)—suspended soil of mainly organic composition | 6 | 3.90 | 0.24 |
2-3 | Suspended soil of the “staple” fern Aglaomorpha (Bidup park) turf (histic) material | 7 | 3.00 | 0.17 |
2-4 | Suspended soil of the “staple” fern Drynaria quercifolia (Cat Tien), turf (histic) material | 5 | 4.80 | 0,16 |
2-5 | Suspended soil of flowering heather (Vaccinium sp.) (Bidup). Ericoid mycorrhizae is repeated. Accordingly, these soils are poor acidic turf-like substrates | 10 | 3.40 | 0.53 |
2-6 | Suspended soil of flowering ginger (Hedychium bousigonianum) (Cat Tien). Input of organic matter by insect (ants), this formation is closest to soils | 5 | 3.60 | 0.55 |
2-7 | Suspended soil of flowering orchid (Cymbidium finlaysonianum) (Phu Quoc) | 2 | 3.80 | 0.52 |
Sample Code | C, % | N, % | H, % | O, % | C/N | H/C | O/C |
---|---|---|---|---|---|---|---|
1-1 | 51.02 * ± 0.05 | 0.84 ± 0.07 | 5.58 ± 0.21 | 42.56 ± 0.30 | 60.74 | 1.22 | 0.83 |
1-2 | 49.84 ± 0.30 | 0.98 ± 0.05 | 5.99 ± 0.01 | 43.18 ± 0.34 | 50.86 | 1.23 | 0.87 |
1-3 | 48.32 ± 0.58 | 0.51 ± 0.02 | 5.67 ± 0.14 | 45.49 ± 0.57 | 94.74 | 1.34 | 0.94 |
1-4 | 50.52 ± 0.19 | 0.58 ± 0.05 | 5.39 ± 0.15 | 43.51 ± 0.06 | 87.10 | 1.36 | 0.86 |
2-1 | 48.00 ± 0.10 | 0.74 ± 0.09 | 5.69 ± 0.03 | 45.55 ± 0.14 | 64.86 | 1.38 | 0.95 |
2-2 | 43.14 ± 0.57 | 1.78 ± 0.07 | 4.76 ± 0.05 | 50.32 ± 0.61 | 24.23 | 1.67 | 1.17 |
2-3 | 34.39 ± 1.27 | 1.53 ± 0.02 | 3.97 ± 0.06 | 60.10 ± 1.20 | 22.48 | 2.44 | 1.74 |
2-4 | 47.66 ± 1.10 | 1.39 ± 0.02 | 4.89 ± 0.07 | 46.04 ± 0.08 | 34.29 | 1.39 | 0.97 |
2-5 | 51.72 ± 0.17 | 0.83 ± 0.08 | 5.51 ± 0.03 | 41.92 ± 0.21 | 62.31 | 1.29 | 0.81 |
2-6 | 37.07 ± 0.56 | 1.58 ± 0.09 | 4.83 ± 0.06 | 56.51 ± 0.08 | 23.46 | 2.14 | 1.52 |
2-7 | 46.39 ± 0.92 | 1.38 ± 0.02 | 5.63 ± 0.19 | 46.59 ± 0.21 | 33.61 | 1.46 | 1.00 |
HA 1-1 | 49.47 ± 0.58 | 3.91 ± 0.08 | 5.36 ± 0.17 | 41.26 ± 0.47 | 12.65 | 1.22 | 0.83 |
HA 1-2 | 49.84 ± 0.28 | 3.59 ± 0.30 | 5.76 ± 0.12 | 40.80 ± 0.74 | 13.88 | 1.20 | 0.82 |
HA 2-1 | 48.81 ± 0.24 | 3.99 ± 0.01 | 5.71 ± 0.05 | 41.48 ± 0.24 | 12.24 | 1.25 | 0.85 |
HA 2-2 | 48.71 ± 0.13 | 4.01 ± 0.05 | 5.69 ± 0.07 | 41.59 ± 0.08 | 12.14 | 1.25 | 0.85 |
Sample Code | 0–46, ppm | 46–60, ppm | 60–110, ppm | 110–144, ppm | 144–160, ppm | 160–185, ppm | 185–200, ppm | Al, * % | Ar, ** % | Ar/Al *** |
1-1 | 22 | 6 | 39 | 17 | 3 | 8 | 5 | 75 | 25 | 0.33 |
1-2 | 21 | 6 | 44 | 13 | 3 | 8 | 5 | 79 | 21 | 0.37 |
1-3 | 20 | 5 | 46 | 12 | 4 | 9 | 4 | 80 | 20 | 0.25 |
1-4 | 20 | 6 | 41 | 17 | 3 | 9 | 4 | 76 | 24 | 0.32 |
2-1 | 18 | 6 | 46 | 14 | 3 | 8 | 5 | 78 | 22 | 0.28 |
2-2 | 20 | 8 | 35 | 16 | 4 | 12 | 5 | 75 | 25 | 0.33 |
2-3 | 27 | 7 | 38 | 14 | 3 | 9 | 4 | 81 | 19 | 0.23 |
2-4 | 21 | 7 | 38 | 16 | 4 | 9 | 5 | 75 | 25 | 0.33 |
2-5 | 31 | 6 | 46 | 2 | 0 | 10 | 5 | 93 | 7 | 0.08 |
2-6 | 37 | 6 | 25 | 14 | 3 | 11 | 4 | 79 | 21 | 0.27 |
2-7 | 31 | 7 | 30 | 13 | 4 | 11 | 4 | 79 | 21 | 0.27 |
HA1-1 | 30 | 6 | 18 | 31 | 5 | 9 | 1 | 63 | 37 | 0.59 |
HA1-2 | 25 | 6 | 17 | 34 | 6 | 10 | 2 | 58 | 42 | 0.72 |
HA2-1 | 28 | 9 | 21 | 25 | 5 | 10 | 2 | 68 | 32 | 0.47 |
HA2-2 | 25 | 9 | 23 | 23 | 7 | 12 | 1 | 69 | 31 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abakumov, E.; Eskov, A. Organic Matter Structural Composition of Vascular Epiphytic Suspended Soils of South Vietnam. Appl. Sci. 2023, 13, 4473. https://doi.org/10.3390/app13074473
Abakumov E, Eskov A. Organic Matter Structural Composition of Vascular Epiphytic Suspended Soils of South Vietnam. Applied Sciences. 2023; 13(7):4473. https://doi.org/10.3390/app13074473
Chicago/Turabian StyleAbakumov, Evgeny, and Alen Eskov. 2023. "Organic Matter Structural Composition of Vascular Epiphytic Suspended Soils of South Vietnam" Applied Sciences 13, no. 7: 4473. https://doi.org/10.3390/app13074473
APA StyleAbakumov, E., & Eskov, A. (2023). Organic Matter Structural Composition of Vascular Epiphytic Suspended Soils of South Vietnam. Applied Sciences, 13(7), 4473. https://doi.org/10.3390/app13074473