Inactivation of the Plant Pathogen Pythium ultimum by Plasma-Processed Air (PPA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Pythium ultimum
2.2. Artificial Inoculation of Agar Blocks and Determination of Recovery after PPA Treatment
2.3. Generation of Plasma Processed Air (PPA) and Agar Block Treatment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, R.J.; Schillinger, W.F.; Christensen, N.W. Rhizoctonia Root Rot and Take-All of Wheat in Diverse Direct-Seed Spring Cropping Systems. Can. J. Plant Pathol. 2002, 24, 349–358. [Google Scholar] [CrossRef]
- Paulitz, T.C.; Adams, K. Composition and Distribution of Pythium Communities in Wheat Fields in Eastern Washington State. Phytopathology 2003, 93, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Chamswarng, C.; Cook, R.J. Identification and Comparative Pathogenicity of Pythium Species. Pac. Northwest 1985, 75, 821–827. [Google Scholar]
- Cook, R.J. Fusarium Foot Rot of Wheat and Its Control in the Pacific Northwest. Plant Dis. 1980, 64, 1061–1066. [Google Scholar] [CrossRef]
- Larkin, R.P.; English, J.T.; Mihail, J.D. Effects of Infection by Pythium Spp. On Root System Morphology of Alfalfa Seedlings. Phytopathology 1995, 85, 430–435. [Google Scholar] [CrossRef]
- Martin, F.N.; Loper, J.E. Soilborne Plant Diseases Caused by Pythium Spp.: Ecology, Epidemiology, and Prospects for Biological Control. Crit. Rev. Plant Sci. 1999, 18, 111–181. [Google Scholar] [CrossRef]
- Paulitz, T.C.; Smiley, R.W.; Cook, R.J. Insights into the Prevalence and Management of Soilborne Cereal Pathogens under Direct Seeding in the Pacific Northwest, USA. Can. J. Plant Pathol. 2002, 24, 416–428. [Google Scholar] [CrossRef]
- Van West, P.; Appiah, A.A.; Gow, N.A.R. Advances in Research on Oomycete Root Pathogens. Physiol. Mol. Plant Pathol. 2003, 62, 99–113. [Google Scholar] [CrossRef]
- Mavrodi, O.V.; Walter, N.; Elateek, S.; Taylor, C.G.; Okubara, P.A. Suppression of Rhizoctonia and Pythium Root Rot of Wheat by New Strains of Pseudomonas. Biol. Control. 2012, 62, 93–102. [Google Scholar] [CrossRef]
- Pánek, M.; Ali, A.; Helmer, Š. Use of Metalaxyl against Some Soil Plant Pathogens of the Class Peronosporomycetes–a Review and Two Case Studies. Plant Prot. Sci. 2022, 58, 92–109. [Google Scholar] [CrossRef]
- Cohen, Y.; Coffey, M.D. Systemic Fungicides and the Control of Oomycetes. Annu. Rev. Phytopathol. 1986, 24, 311–338. [Google Scholar] [CrossRef]
- Papavizas, G.C.; O’Neill, N.R.; Lewis, J.A. Fungistatic Activity of Propyl-N-[Adimethylaminopropyl) Carbamate on Pythium Spp. And Its Reversal by Sterols. Phytopathology 1978, 68, 1667–1671. [Google Scholar] [CrossRef] [Green Version]
- Broders, K.D.; Lipps, P.E.; Paul, P.A.; Dorrance, A.E. Characterization of Pythium Spp. Associated with Corn and Soybean Seed and Seedling Disease in Ohio. Plant Dis. 2007, 91, 727–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scariot, F.J.; Jahn, L.; Delamare, A.P.L.; Echeverrigaray, S. Necrotic and Apoptotic Cell Death Induced by Captan on Saccharomyces Cerevisiae. World J. Microbiol. Biotechnol. 2017, 33, 159. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, O.; Ślizak, W.; Piotrowski, W. Influence of Seed Dressing on Rhizosphere Microflora of Legumes II. Response of Some Physiological Groups. Zent. Mikrobiol. 1993, 148, 365–373. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, L.; Cao, Z.; Yu, Y. Accumulation of Chlorothalonil Successively Applied to Soil and Its Effect on Microbial Activity in Soil. Ecotoxicol. Environ. Saf. 2012, 81, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, O.; Ślizak, W.; Piotrowski, W. Influence of Seed Dressing on Rhizosphere Microflora of Legumes I. Biotic Relations. Zent. Mikrobiol. 1993, 148, 357–364. [Google Scholar] [CrossRef]
- Price, C.; Parker, J.; Warrilow, A.; Kelly, D.E.; Kelly, S.L. Azole Fungicides–Understanding Resistance Mechanisms in Agricultural Fungal Pathogens. Pest Manag. Sci. 2015, 71, 1054–1058. [Google Scholar] [CrossRef]
- Adhikari, B.; Pangomm, K.; Veerana, M.; Mitra, S.; Park, G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020, 11, 77. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B. RCHM Hofman-Caris, Dragana Maric, Jonathan P Reid, and Elisa Ceriani, Plasma–Liquid Interactions: A Review and Roadmap. Plasma Sources Sci. Technol. 2016, 25, 53002. [Google Scholar] [CrossRef] [Green Version]
- Graves, D. The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Gallagher, M.J.; Vaze, N.; Gangoli, S.; Vasilets, V.N.; Gutsol, A.F.; Milovanova, T.N.; Anandan, S.; Murasko, D.M.; Fridman, A.A. Rapid Inactivation of Airborne Bacteria Using Atmospheric Pressure Dielectric Barrier Grating Discharge. IEEE Trans. Plasma Sci. 2007, 35, 1501–1510. [Google Scholar] [CrossRef]
- Laroussi, M. Low Temperature Plasma-Based Sterilization: Overview and State-of-the-Art. Plasma Process. Polym. 2005, 2, 391–400. [Google Scholar] [CrossRef]
- Graves, D.B.; Bakken, L.B.; Jensen, M.B.; Ingels, R. Plasma Activated Organic Fertilizer. Plasma Chem. Plasma Process. 2019, 39, 1–19. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Ghimire, K.B.; Ying, L.; Adhikari, M.; Veerana, M.; Kaushik, N.; Jha, N.; Adhikari, B.; Lee, S.-J.; Masur, K.; et al. Biological and Medical Applications of Plasma-Activated Media, Water and Solutions. Biol. Chem. 2018, 400, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Moreau, M.; Orange, N.; Feuilloley, M.G.J. Non-Thermal Plasma Technologies: New Tools for Bio-Decontamination. Biotechnol. Adv. 2008, 26, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal Plasma—A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; Von Woedtke, T.; Brandenburg, R.; von dem Hagen, T.; Weltmann, K.-D. Low Temperature Atmospheric Pressure Plasma Sources for Microbial Decontamination. J. Phys. D Appl. Phys. 2011, 44, 013002. [Google Scholar] [CrossRef] [Green Version]
- Ehlbeck, J.; Krohmann, U.; Neumann, T. Verfahren Und Vorrichtung Zum Erzeugen Eines Sich Ausdehnenden, Diffusen Mikrowellenplasmas; Leibniz-Institute for Plasma Science and Technology: Greifswald, Germany, 2005. [Google Scholar]
- Frohling, A.; Durek, J.; Schnabel, U.; Ehlbeck, J.; Bolling, J.; Schluter, O. Indirect Plasma Treatment of Fresh Pork: Decontamination Efficiency and Effects on Quality Attributes. Innov. Food Sci. Emerg. Technol. 2012, 16, 381–390. [Google Scholar] [CrossRef]
- Schnabel, U.; Niquet, R.; Krohmann, U.; Winter, J.; Schlüter, O.; Weltmann, K.-D.; Ehlbeck, J. Decontamination of Microbiologically Contaminated Specimen by Direct and Indirect Plasma Treatment. Plasma Process. Polym. 2012, 9, 569–575. [Google Scholar] [CrossRef]
- Schnabel, U.; Andrasch, M.; Weltmann, K.-D.; Ehlbeck, J. Inactivation of Vegetative Microorganisms and Bacillus Atrophaeus Endospores by Reactive Nitrogen Species (RNS). Plasma Process. Polym. 2014, 11, 110–116. [Google Scholar] [CrossRef]
- Schnabel, U.; Andrasch, M.; Weltmann, K.-D.; Ehlbeck, J. Inactivation of Microorganisms in Tyvek® Packaging by Microwave Plasma Processed Air. Glob. J. Biol. Agric. Health Sci. 2015, 4, 185–192. [Google Scholar]
- Wannicke, N.; Wagner, R.; Stachowiak, J.; Nishime, T.M.C.; Ehlbeck, J.; Weltmann, K.-D.; Brust, H. Efficiency of Plasma-Processed Air for Biological Decontamination of Crop Seeds on the Premise of Unimpaired Seed Germination. Plasma Process. Polym. 2021, 18, 2000207. [Google Scholar] [CrossRef]
- Mravlje, J.; Regvar, M.; Starič, P.; Mozetič, M.; Vogel-Mikuš, K. Cold Plasma Affects Germination and Fungal Community Structure of Buckwheat Seeds. Plants 2021, 10, 851. [Google Scholar] [CrossRef]
- Ehlbeck, J.; Brandenburg, R.; Von Woedtke, T.; Krohmann, U.; Stieber, M.; Weltmann, K.-D. Plasmose-Antimicrobial Effects of Modular Atmospheric Plasma Sources. GMS Krankenh. Interdiszip. 2008, 3, Doc14. [Google Scholar]
- Park, B.J.; Lee, D.H.; Park, J.-C.; Lee, I.-S.; Lee, K.-Y.; Hyun, S.O.; Chun, M.-S.; Chung, K.-H. Sterilization Using a Microwave-Induced Argon Plasma System at Atmospheric Pressure. J. Phys. Plasmas 2003, 10, 4539–4544. [Google Scholar] [CrossRef]
- Šimončicová, J.; Kaliňáková, B.; Kováčik, D.; Medvecká, V.; Lakatoš, B.; Kryštofová, S.; Hoppanová, L.; Palušková, V.; Hudecová, D.; Ďurina, P.; et al. Cold Plasma Treatment Triggers Antioxidative Defense System and Induces Changes in Hyphal Surface and Subcellular Structures of Aspergillus Flavus. Appl. Microbiol. Biotechnol. 2018, 102, 6647–6658. [Google Scholar] [CrossRef] [PubMed]
- Panngom, K.; Lee, S.H.; Park, D.H.; Sim, G.B.; Kim, Y.H.; Uhm, H.S.; Park, G.; Choi, E.H. Non-Thermal Plasma Treatment Diminishes Fungal Viability and up-Regulates Resistance Genes in a Plant Host. PLoS ONE 2014, 9, e99300. [Google Scholar] [CrossRef]
- Avramidis, G.; Stüwe, B.; Wascher, R.; Bellmann, M.; Wieneke, S.; von Tiedemann, A.; Viöl, W. Fungicidal Effects of an Atmospheric Pressure Gas Discharge and Degradation Mechanisms. Surf. Coat. Technol. 2010, 205, S405–S408. [Google Scholar] [CrossRef]
- Montie, T.; Kelly-Wintenberg, K.; Roth, J. An Overview of Research Using the One Atmosphere Uniform Glow Discharge Plasma (Oaugdp) for Sterilization of Surfaces and Materials. IEEE Trans. Plasma Sci. 2000, 28, 41–50. [Google Scholar] [CrossRef]
- Yasuda, H.; Hashimoto, M.; Rahman, M.; Takashima, K.; Mizuno, A. States of Biological Components in Bacteria and Bacteriophages During Inactivation by Atmospheric Dielectric Barrier Discharges. Plasma Process. Polym. 2008, 5, 615–621. [Google Scholar] [CrossRef]
- Deng, X.T.; Shi, J.J.; Chen, H.L.; Kong, M.G. Protein Destruction by Atmospheric Pressure Glow Discharges. Appl. Phys. Lett. 2007, 90, 013903. [Google Scholar] [CrossRef] [Green Version]
- Mendis, D.; Rosenberg, M.; Azam, F. A Note on the Possible Electrostatic Disruption of Bacteria. IEEE Trans. Plasma Sci. 2000, 28, 1304–1306. [Google Scholar] [CrossRef]
- Laroussi, M.; Mendis, D.A.; Rosenberg, M. Plasma Interaction with Microbes. N. J. Phys. 2003, 5, 41. [Google Scholar] [CrossRef]
Source | DF | Type III Sum of Squares | Mean Square | F | p |
---|---|---|---|---|---|
Treatment | 3 | 1461.292 | 1782.411 | 78.987 | <0.001 |
Comparison | Diff. of means | t | p | ||
PC vs. 63 slm, 25 min/PPA | 20.533 | 11.436 | <0.001 | ||
PC vs. 73 slm, 15 min/PPA | 20.533 | 11.436 | <0.001 | ||
PC vs. 73 slm, 10 min/PPA | 20.533 | 11.436 | <0.001 | ||
PC vs. 63 slm, gas only | 0.136 | 0.0756 | 1 | ||
PC vs. 73 slm gas only | 0.0702 | 0.0391 | 1 | ||
63 slm gas only vs. 63 slm, 25 min/PPA | 20.669 | 11.511 | <0.001 | ||
63 slm gas only vs. PPA 73 slm, 15 min/PPA | 20.669 | 11.511 | <0.001 | ||
63 slm gas only vs. PPA 73 slm, 10 min/PPA | 20.669 | 11.511 | <0.001 | ||
73 slm gas only vs. 63 slm, 25 min/PPA | 20.599 | 11.472 | <0.001 | ||
73 slm gas only vs. 73 slm, 15 min/PPA | 20.599 | 11.472 | <0.001 | ||
73 slm gas only vs. 73 slm, 10 min/PPA | 20.599 | 11.472 | <0.001 | ||
73 slm gas only vs. 63 slm gas only | 0.0702 | 0.0391 | 1 | ||
63 slm, 25 min/ PPA vs. 73 slm, 15 min/PPA | 0 | 0 | 1 | ||
63 slm, 25 min/PPA vs. 73 slm, 10 min/PPA | 0 | 0 | 1 | ||
73 slm, 15 min/ PPA vs. 73 slm, 10 min/PPA | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wannicke, N.; Brust, H. Inactivation of the Plant Pathogen Pythium ultimum by Plasma-Processed Air (PPA). Appl. Sci. 2023, 13, 4511. https://doi.org/10.3390/app13074511
Wannicke N, Brust H. Inactivation of the Plant Pathogen Pythium ultimum by Plasma-Processed Air (PPA). Applied Sciences. 2023; 13(7):4511. https://doi.org/10.3390/app13074511
Chicago/Turabian StyleWannicke, Nicola, and Henrike Brust. 2023. "Inactivation of the Plant Pathogen Pythium ultimum by Plasma-Processed Air (PPA)" Applied Sciences 13, no. 7: 4511. https://doi.org/10.3390/app13074511
APA StyleWannicke, N., & Brust, H. (2023). Inactivation of the Plant Pathogen Pythium ultimum by Plasma-Processed Air (PPA). Applied Sciences, 13(7), 4511. https://doi.org/10.3390/app13074511