An Integrated Method for the Vibroacoustic Evaluation of a Carbon Fiber Bouzouki
Abstract
:1. Introduction
2. Carbon Fiber Bouzouki Manufacturing
3. Psychoacoustic Tests
4. Electronic Speckle Pattern Interferometry
5. Impulse Response Measurements
6. Numerical Modeling and Simulation
Quantities | Twill | Ud |
---|---|---|
Density | 1451 kg m−3 | 1273 kg m−3 |
Young Modulus (E1) | 59.16 GPa | 10.49 GPa |
Young Modulus (E2) | 59.16 GPa | 96.66 GPa |
Young Modulus (E3) | 7.5 GPa | 10.49 GPa |
Poisson Ration (v12) | 0.04 | 0.1 |
Poisson Ration (v23) | 0.3 | 0.1 |
Poisson Ration (v31) | 0.3 | 0.9 |
Shear Modulus (G12) | 17.5 GPa | 2.16 GPa |
Shear Modulus (G23) | 2.7 GPa | 2.16 GPa |
Shear Modulus (G31) | 2.7 GPa | 6.51 GPa |
7. Results and Discussion
Modes | ESPI Results (Hz) | FEM Results (Hz) |
---|---|---|
(1,1) | 305 | 300 |
(1,2) | 450 | 440 |
(2,2) | 686 | 655 |
(2,3) | 880 | 830 |
(3,2) | 1080 | 1020 |
(4,3) | 1390 | 1330 |
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haines, D.W.; Chang, N.; Hutchins, C.M. Violin with a graphite-epoxy top plate. J. Acoust. Soc. Am. 1975, 57, S21. [Google Scholar] [CrossRef]
- Bucur, V. Composite materials for musical instruments. In Handbook of Materials for String Musical Instruments, 1st ed.; Springer: Cham, Switzerland, 2016; pp. 845–875. [Google Scholar]
- Scientific American. Available online: https://www.scientificamerican.com/article/carbon-fiber-cellos/ (accessed on 22 February 2023).
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Bouzouki (accessed on 22 February 2023).
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Tanbur (accessed on 22 February 2023).
- Tronchin, L.; Manfren, M.; Vodola, V. Sound Characterization through Intensity of Acoustic Radiation Measurement: A Study of Persian Musical Instruments. Appl. Sci. 2020, 10, 633. [Google Scholar] [CrossRef] [Green Version]
- Woodhouse, J. The acoustics of the violin: A review. Rep. Prog. Phys. 2014, 77, 115901. [Google Scholar] [CrossRef] [PubMed]
- Chatziioannou, V. Reconstruction of an early viola da gamba informed by physical modeling. J. Acoust. Soc. Am. 2019, 145, 3435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, H. Modal analysis of the Setar: A numerical–experimental comparison. J. Vib. Acoust. 2015, 137, 061006–1. [Google Scholar] [CrossRef]
- Bakarezos, E.; Orphanos, Y.; Kaselouris, E.; Dimitriou, V.; Tatarakis, M.; Papadogiannis, N.A. Laser-Based Interferometric Techniques for the Study of Musical Instruments. In Computational Phonogram Archiving. Current Research in Systematic Musicology, 1st ed.; Bader, R., Ed.; Springer: Cham, Switzerland, 2019; Volume 5, pp. 251–268. [Google Scholar]
- Bakarezos, E.; Vathis, V.; Brezas, S.; Orphanos, Y.; Papadogiannis, N.A. Acoustics of the Chelys—An ancient Greek tortoise-shell lyre. Appl. Acoust. 2012, 73, 478–483. [Google Scholar] [CrossRef]
- Kaselouris, E.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A.; Dimitriou, V. A Review of Finite Element Studies in String Musical Instruments. Acoustics 2022, 4, 183–202. [Google Scholar] [CrossRef]
- Kaselouris, E.; Alexandraki, C.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A.; Dimitriou, V. A detailed FEM Study on the Vibro-acoustic Behaviour of Crash and Splash Musical Cymbals. Int. J. Circuits Syst. Signal Process. 2022, 16, 948–955. [Google Scholar] [CrossRef]
- Kaselouris, E.; Paschalidou, S.; Alexandraki, C.; Dimitriou, V. FEM-BEM Vibroacoustic Simulations of Motion Driven Cymbal-Drumstick Interactions. Acoustics 2023, 5, 165–176. [Google Scholar] [CrossRef]
- Gonzalez, S.; Salvi, D.; Baeza, D.; Antonacci, F.; Sarti, A. A data-driven approach to violin making. Sci. Rep. 2021, 11, 9455. [Google Scholar] [CrossRef] [PubMed]
- Bakarezos, M.; Gymnopoulos, S.; Brezas, S.; Orphanos, Y.; Maravelakis, E.; Papadopoulos, C.I.; Tatarakis, M.; Antoniadis, A.; Papadogiannis, N.A. Vibration analysis of the top plates of traditional greek string musical instruments. In Proceedings of the 13th International Congress on Sound and Vibration 2006, ICSV 2006, Vienna, Austria, 2–6 July 2006; Volume 6, pp. 4939–4946. [Google Scholar]
- Stanciu, M.D.; Coşereanu, C.; Dinulică, F.; Bucur, V.T. Effect of wood species on vibration modes of violins plates. Eur. J. Wood Wood Prod. 2020, 78, 785–799. [Google Scholar] [CrossRef]
- Kaselouris, E.; Orphanos, Y.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A.; Dimitriou, V. Influence of the plate thickness and material properties on the violin top plate modes. In INTER-NOISE 2021, Proceedings of the International Congress and Exposition of Noise Control Engineering, Washington, DC, USA, 1–4 August 2021; Institute of Noise Control Engineering: Reston, VA, USA, 2021; Volume 263, pp. 3369–3377. [Google Scholar]
- TU-R BS.1534-1; Method for the Subjective Assessment of Intermediate Quality Level of Coding Systems. International Telecommunication Union: Geneva, Switzerland, 2003.
- Fritz, C.; Dubois, D. Perceptual Evaluation of Musical Instruments State of the Art and Methodology. Acta Acust. United Acust. 2015, 101, 369–381. [Google Scholar] [CrossRef]
- Chartofylakas, L. Acoustic and Sound Analysis of the Instruments of the Bouzouki Family. Master’s Thesis, Department of Music Studies, Ionian University, Corfu, Greece, 2009. [Google Scholar]
- Chartofylakas, L.; Floros, A.; Bakarezos, E.; Papadogiannis, N.A. Acoustic and sound analysis of the instruments of the Bouzouki family. In Proceedings of the 5th Panhellenic Conference Acoustics, Athens, Greece, 4–6 October 2010; pp. 422–428. [Google Scholar]
- Babaris, K. Study of the Use of a New Material for a Bouzouki Soundboard. Diploma Thesis, Department of Product and Systems Design Engineering, University of Aegean, Mytilene, Greece, 2017. [Google Scholar]
- Mc Connell, K.G.; Varoto, P.S. Vibration Testing: Theory and Practice; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Hallquist, J.O. LS-DYNA Theory Manual; Livermore Software Technology Corporation: Livermore, CA, USA, 2006. [Google Scholar]
- Arnal, M.I.; Doménech-Ballester, L.; Sánchez-López, F. Manufacturing and Structural Features with Respect to the Modal Behavior of a Carbon Fiber-Reinforced Epoxy Drum Shell. Materials 2019, 12, 4069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plath, N.; Linke, S.; Mores, R. On the angle-dependent vibrational behavior of fiber composite plates and its implications for musical instrument making. J. Acoust. Soc. Am. 2022, 151, 1956–1970. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.A.; Soto, C.A.; Torres-Torres, D. Exploring design variations of the Titian Stradivari violin using a finite element model. J. Acoust. Soc. Am. 2020, 148, 1496–1506. [Google Scholar] [CrossRef] [PubMed]
- Kaselouris, E.; Alexandraki, C.; Orphanos, Y.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A.; Dimitriou, V. Acoustic analysis of impact sound on vibrating circular membranes. In INTER-NOISE 2021, Proceedings of the International Congress and Exposition of Noise Control Engineering, Washington, DC, USA, 1–4 August 2021; Institute of Noise Control Engineering: Reston, VA, USA, 2021; Volume 63, pp. 3378–3385. [Google Scholar]
Modes | ESPI W02 Results (Hz) | FEM1 C01 Results (Hz) | FEM2 C01 Results (Hz) |
---|---|---|---|
(1,1) | 185 | 295 | 200 |
(2,2) | 436 | 650 | 475 |
(2,3) | 635 | 810 | 615 |
(3,2) | 710 | 860 | 700 |
(4,2) | 796 | 1000 | 805 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezas, S.; Katsipis, M.; Orphanos, Y.; Kaselouris, E.; Kechrakos, K.; Kefaloyannis, N.; Papadaki, H.; Sarantis-Karamesinis, A.; Petrakis, S.; Theodorakis, I.; et al. An Integrated Method for the Vibroacoustic Evaluation of a Carbon Fiber Bouzouki. Appl. Sci. 2023, 13, 4585. https://doi.org/10.3390/app13074585
Brezas S, Katsipis M, Orphanos Y, Kaselouris E, Kechrakos K, Kefaloyannis N, Papadaki H, Sarantis-Karamesinis A, Petrakis S, Theodorakis I, et al. An Integrated Method for the Vibroacoustic Evaluation of a Carbon Fiber Bouzouki. Applied Sciences. 2023; 13(7):4585. https://doi.org/10.3390/app13074585
Chicago/Turabian StyleBrezas, Spyros, Markos Katsipis, Yannis Orphanos, Evaggelos Kaselouris, Kostas Kechrakos, Nikos Kefaloyannis, Helen Papadaki, Antonis Sarantis-Karamesinis, Stylianos Petrakis, Ioannis Theodorakis, and et al. 2023. "An Integrated Method for the Vibroacoustic Evaluation of a Carbon Fiber Bouzouki" Applied Sciences 13, no. 7: 4585. https://doi.org/10.3390/app13074585
APA StyleBrezas, S., Katsipis, M., Orphanos, Y., Kaselouris, E., Kechrakos, K., Kefaloyannis, N., Papadaki, H., Sarantis-Karamesinis, A., Petrakis, S., Theodorakis, I., Iliadis, E., Karagkounidis, T., Koumantos, I., Tatarakis, M., Bakarezos, M., Papadogiannis, N. A., & Dimitriou, V. (2023). An Integrated Method for the Vibroacoustic Evaluation of a Carbon Fiber Bouzouki. Applied Sciences, 13(7), 4585. https://doi.org/10.3390/app13074585