Denovo-GCN: De Novo Peptide Sequencing by Graph Convolutional Neural Networks
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Tandem Mass Spectrometry
2.2. Spectrum Graph
2.3. Convolutional Neural Networks
2.4. Graph Convolutional Neural Networks
2.5. Denovo-GCN Network
2.6. Data Sets and Evaluation Metrics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakurai, T.; Matsuo, T.; Matsuda, H.; Katakuse, I. PAAS 3: A computer program to determine probable sequence of peptides from mass spectrometric data. J. Mass Spectrom. 1984, 11, 396–399. [Google Scholar] [CrossRef]
- Ishikawa, K.; Niwa, Y. Computer-aided peptide sequencing by fast atom bombardment mass spectrometry. J. Mass Spectrom. 1986, 13, 373–380. [Google Scholar] [CrossRef]
- Yates, J.R.; Griffin, P.; Hood, L.; Zhou, J. Computer-Aided Interpretation of Low-Energy MS/MS Mass-Spectra of Peptides. Tech. Protein Chem. Second edition. 1991, 46, 477–485. [Google Scholar]
- Tran, N.H.; Rahman, M.Z.; He, L.; Xin, L.; Shan, B.; Li, M. Complete de novo assembly of monoclonal antibody sequences. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Faridi, P.; Li, C.; Ramarathinam, S.H.; Vivian, J.P.; Illing, P.T.; Mifsud, N.A.; Ayala, R.; Song, J.; Gearing, L.J.; Hertzog, P.J.; et al. A subset of HLA-I peptides are not genomically templated: Evidence for cis- and trans-spliced peptide ligands. Sci. Immunol. 2018, 3, eaar3947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Laumont, C.M.; Vincent, K.; Hesnard, L.; Audemard, É.; Bonneil, É.; Laverdure, J.-P.; Gendron, P.; Courcelles, M.; Hardy, M.-P.; Côté, C.; et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 2018, 10, eaau5516. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.A.; Johnson, R.S. Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal. Chem. 2001, 73, 2594–2604. [Google Scholar] [CrossRef]
- Taylor, J.A.; Johnson, R.S. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1067–1075. [Google Scholar] [CrossRef]
- Johnson, R.S.; Taylor, J.A. Searching sequence databases via de novo peptide sequencing by tandem mass spectrometry. Methods Mol. Biol. 2002, 22, 301–315. [Google Scholar] [CrossRef]
- Fernandez-de-Cossio, J.; Gonzalez, J.; Betancourt, L.; Besada, V.; Padron, G.; Shimonishi, Y.; Takao, T. Automated interpretation of high-energy collision-induced dissociation spectra of singly protonated peptides by ‘SeqMS’, a software aid for de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 1867–1878. [Google Scholar] [CrossRef]
- Dančík, V.; Addona, T.A.; Clauser, K.R.; Vath, J.E.; Pevzner, P.A. De Novo Peptide Sequencing via Tandem Mass Spectrometry. J. Comput. Biol. 1999, 6, 327–342. [Google Scholar] [CrossRef]
- Frank, A.; Pevzner, P. PepNovo: De novo peptide sequencing via probabilistic network modeling. Anal. Chem. 2005, 77, 964–973. [Google Scholar] [CrossRef]
- Grossmann, J.; Roos, F.F.; Cieliebak, M.; Lipták, Z.; Mathis, L.K.; Müller, M.; Gruissem, W.; Baginsky, S. AUDENS: A tool for automated peptide de novo sequencing. J. Proteome Res. 2005, 4, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Sun, R.-X.; Yang, B.; Song, C.Q.; Wang, L.H.; Liu, C.; Fu, Y.; Yuan, Z.-F.; Wang, H.-P.; He, S.-M.; et al. pNovo: De novo peptide sequencing and identification using HCD spectra. J. Proteome Res. 2010, 9, 2713–2724. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Chen, H.; He, K.; Wu, L.; Yang, B.; Sun, R.-X.; Liu, J.; Zeng, W.-F.; Song, C.-Q.; He, S.-M.; et al. pNovo+: De novo peptide sequencing using complementary HCD and ETD tandem mass spectra. J. Proteome Res. 2013, 12, 615–625. [Google Scholar] [CrossRef]
- Ciresan, D.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Deep neural networks segment neuronal membranes in electron microscopy images. Neural Inf. Process. Syst. 2012, 25, 2843–2851. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Sutskever, I.; Vinyals, O.; Le, Q. Sequence to sequence learning with neural networks. Neural Inf. Process. Syst. 2014, 27, 3104–3112. [Google Scholar]
- Karpathy, A.; Li, F.F. Deep Visual-Semantic Alignments for Generating Image Description. In Proceedings of the Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3128–3137. [Google Scholar]
- Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A Neural Image Caption Generator. In Proceedings of the Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3156–3164. [Google Scholar]
- Ma, B. Novor: Real-Time Peptide de Novo Sequencing Software. J. Am. Soc. Mass Spectrom. 2015, 11, 1885–1894. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2337–2342. [Google Scholar] [CrossRef]
- Tran, N.H.; Zhang, X.; Lei, X.; Shan, B.; Ming, L. De novo peptide sequencing by deep learning. Proc. Natl. Acad. Sci. USA 2017, 114, 8247–8252. [Google Scholar] [CrossRef] [Green Version]
- Muth, T.; Renard, B.Y. Evaluating de novo sequencing in proteomics: Already an accurate alternative to database-driven peptide identification? Brief Bioinform. 2018, 19, 954–970. [Google Scholar] [CrossRef]
- Qiao, R.; Tran, N.H.; Xin, L.; Chen, X.; Li, M.; Shan, B.; Ghodsi, A. Computationally instrument-resolution-independent de novo peptide sequencing for high-resolution devices. Nat. Mach. Intell. 2021, 3, 420–425. [Google Scholar] [CrossRef]
- Thomas, N.K.; Welling, M. Semi-Supervised Classification with Graph Convolution Networks. In Proceedings of the Machine Learning. Palais des Congrès Neptune, Toulon, France, 9 September 2016. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. Neural Inf. Process. Syst. (NIPS) 2017. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the Machine Learning, Vancouver, BC, Canada, 4 February 2018. [Google Scholar]
- Guo, K.; Wang, P.; Shi, P.; He, C.; Wei, C. A New Partitioned Spatial–Temporal Graph Attention Convolution Network for Human Motion Recognition. Appl. Sci. 2023, 13, 1647. [Google Scholar] [CrossRef]
- Wan, H.; Tang, P.; Tian, B.; Yu, H.; Jin, C.; Zhao, B.; Wang, H. Water Extraction in PolSAR Image Based on Superpixel and Graph Convolutional Network. Appl. Sci. 2023, 13, 2610. [Google Scholar] [CrossRef]
- Bioinformatics Solutions Inc. PEAKS Studio, Version 8.0; Bioinformatics Solutions Inc.: Waterloo, ON, Canada, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Zhang, X.; Wang, R.; Wang, H. Denovo-GCN: De Novo Peptide Sequencing by Graph Convolutional Neural Networks. Appl. Sci. 2023, 13, 4604. https://doi.org/10.3390/app13074604
Wu R, Zhang X, Wang R, Wang H. Denovo-GCN: De Novo Peptide Sequencing by Graph Convolutional Neural Networks. Applied Sciences. 2023; 13(7):4604. https://doi.org/10.3390/app13074604
Chicago/Turabian StyleWu, Ruitao, Xiang Zhang, Runtao Wang, and Haipeng Wang. 2023. "Denovo-GCN: De Novo Peptide Sequencing by Graph Convolutional Neural Networks" Applied Sciences 13, no. 7: 4604. https://doi.org/10.3390/app13074604
APA StyleWu, R., Zhang, X., Wang, R., & Wang, H. (2023). Denovo-GCN: De Novo Peptide Sequencing by Graph Convolutional Neural Networks. Applied Sciences, 13(7), 4604. https://doi.org/10.3390/app13074604