Sensing and Device Neighborhood-Based Slot Assignment Approach for the Internet of Things
Abstract
:1. Introduction
- 1.
- A neighborhood-oriented slots allocation scheme for the IoTs networks where member devices are mobile was created;
- 2.
- An algorithm to ensure the maximum possible utilization of both dedicated and reserved slots in the operational IoT network was utilized;
- 3.
- An infrastructure-free scheme for event-based application areas was elaborated.
2. Literature Review
3. Motivation
4. Proposed Neighborhood-Enabled TDMA Approach
4.1. Discovery of Neighbors in the IoT
4.2. TDMA-Enabled Communication Strategy
4.3. Device Mobility in the Operational IoT Network
Algorithm 1 Proposed Algorithm for mobile devices |
|
Algorithm 2 Proposed TDMA algorithm for mobile devices in the IoT Networks |
|
5. Simulation Results
5.1. Empty Slots Utilization
5.2. Average Throughput Analysis
5.3. Average Packet Loss Ratio (APLR)
5.4. End-to-End Delay QoS Metric
6. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alkhariji, L.; De, S.; Rana, O.; Perera, C. Semantics-based privacy by design for internet of things applications. Future Gener. Comput. Syst. 2023, 138, 280–295. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, W.; Zhao, J.; Guan, Z.; Song, X.; Li, J. Uncertainty-aware multiview deep learning for internet of things applications. IEEE Trans. Ind. Inform. 2022, 19, 1456–1466. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, L.; He, C.; Zhang, M.; Krishnamachari, B.; Avestimehr, A.S. Federated learning for the internet of things: Applications, challenges, and opportunities. IEEE Internet Things Mag. 2022, 5, 24–29. [Google Scholar] [CrossRef]
- Savaglio, C.; Ganzha, M.; Paprzycki, M.; ădică, C.B.; Ivanović, M.; Fortino, G. Agent-based internet of things: State-of-the-art and research challenges. Future Gener. Comput. Syst. 2020, 102, 1038–1053. [Google Scholar] [CrossRef]
- Tran, D.-N.; Nguyen, T.N.; Khanh, P.C.P.; Tran, D.-T. An iot-based design using accelerometers in animal behavior recognition systems. IEEE Sens. J. 2021, 22, 17515–17528. [Google Scholar] [CrossRef]
- Naeem, M.A.; Nguyen, T.N.; Ali, R.; Cengiz, K.; Meng, Y.; Khurshaid, T. Hybrid cache management in iot-based named data networking. IEEE Internet Things J. 2021, 9, 7140–7150. [Google Scholar] [CrossRef]
- Azarhava, H.; Abdollahi, M.P.; Niya, J.M. Age of information in wireless powered iot networks: Noma vs. tdma. Ad Hoc Netw. 2020, 104, 102179. [Google Scholar] [CrossRef]
- Mehmood, G.; Khan, M.Z.; Abbas, S.; Faisal, M.; Rahman, H.U. An energy-efficient and cooperative fault-tolerant communication approach for wireless body area network. IEEE Access 2020, 8, 69134–69147. [Google Scholar] [CrossRef]
- Khan, S.; Iqbal, W.; Waheed, A.; Mehmood, G.; Khan, S.; Zareei, M.; Biswal, R.R. An efficient and secure revocation-enabled attribute-based access control for ehealth in smart society. Sensors 2022, 22, 336. [Google Scholar] [CrossRef]
- Bankov, D.; Khorov, E.; Lyakhov, A. The study of the distributed control method to hasten link set-up in ieee 802.11 ah networks. In Proceedings of the 2016 XV International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY), St. Petersburg, Russia, 26–29 September 2016; pp. 13–17. [Google Scholar]
- Shahin, N.; Tann, L.; Kim, Y.-T. Enhanced registration procedure with nav for mitigated contentions in m2m communications. In Proceedings of the 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), Kanazawa, Japan, 5–7 October 2016; pp. 1–6. [Google Scholar]
- Faruque, S. Time division multiple access (tdma). In Radio Frequency Multiple Access Techniques Made Easy; Springer: Cham, Switzerland, 2019; pp. 35–43. [Google Scholar]
- Ramachandran, A.; Taj, M.A.; Maheshwari, R.; Karuppiah, A. Design and simulation of multi-channel v-tdma for iot-based healthcare systems. In Smart Trends in Computing and Communications: Proceedings of SmartCom 2020, Paris, France, 29–31 December 2020; Springer: Singapore, 2020; pp. 319–329. [Google Scholar]
- Nguyen, T.-T.; Kim, T.; Kim, T. A distributed tdma scheduling algorithm using topological ordering for wireless sensor networks. IEEE Access 2020, 8, 145316–145331. [Google Scholar] [CrossRef]
- Al-Janabi, T.A.; Al-Raweshidy, H.S. An energy efficient hybrid mac protocol with dynamic sleep-based scheduling for high density iot networks. IEEE Internet Things J. 2019, 6, 2273–2287. [Google Scholar] [CrossRef] [Green Version]
- Lakhan, A.; Memon, M.S.; Mastoi, Q.U.A.; Elhoseny, M.; Mohammed, M.A.; Qabulio, M.; Abdel-Basset, M. Cost-efficient mobility offloading and task scheduling for microservices iovt applications in container-based fog cloud network. Clust. Comput. 2022, 25, 2061–2083. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, H.; Huang, J. Oca-mac: A cooperative tdma-based mac protocol for vehicular ad hoc networks. Sensors 2019, 19, 2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, I.; Makhdoom, I.; Shariati, N.; Raza, M.A.; Keshavarz, R.; Lipman, J.; Abolhasan, M.; Jamalipour, A. Internet of things 2.0: Concepts, applications, and future directions. IEEE Access 2021, 9, 70961–71012. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.A.; Kadry, S.; AlQahtani, S.A.; Maashi, M.S.; Abdulkareem, K.H. Federated learning-aware multi-objective modeling and blockchain-enable system for iiot applications. Comput. Electr. Eng. 2022, 100, 107839. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Pham, Q.-V.; Nguyen, V.-D.; Lee, J.-H.; Kim, Y.-H. Resource allocation for energy efficiency in ofdma-enabled wpcn. IEEE Wirel. Commun. Lett. 2020, 9, 2049–2053. [Google Scholar] [CrossRef]
- Khan, W.U.; Jameel, F.; Jamshed, M.A.; Pervaiz, H.; Khan, S.; Liu, J. Efficient power allocation for noma-enabled iot networks in 6g era. Phys. Commun. 2020, 39, 101043. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, Z.; Dai, X.; Dobre, O.A. On the performance of network noma in uplink comp systems: A stochastic geometry approach. IEEE Trans. Commun. 2019, 67, 5084–5098. [Google Scholar] [CrossRef] [Green Version]
- Shahab, M.B.; Shin, S.Y. Time shared half/full-duplex cooperative noma with clustered cell edge users. IEEE Commun. Lett. 2018, 22, 1794–1797. [Google Scholar] [CrossRef]
- Adame, T.; Bel, A.; Bellalta, B.; Barcelo, J.; Oliver, M. Ieee 802.11 ah: The wifi approach for m2m communications. IEEE Wirel. Commun. 2014, 21, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Doost-Mohammady, R.; Naderi, M.Y.; Chowdhury, K.R. Performance analysis of csma/ca based medium access in full duplex wireless communications. IEEE Trans. Mob. Comput. 2016, 15, 1457–1470. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.P.; Jara, A.J.; Ogorzalek, M.J. Extending extensible authentication protocol over ieee 802.15. 4 networks. In Proceedings of the 2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Birmingham, UK, 2–4 July 2014; pp. 340–345. [Google Scholar]
- Chen, Y.; Ji, F.; Guan, Q.; Wang, Y.; Chen, F.; Yu, H. Adaptive rto for handshaking-based mac protocols in underwater acoustic networks. Future Gener. Comput. Syst. 2018, 86, 1185–1192. [Google Scholar] [CrossRef]
- Shahin, N.; Ali, R.; Kim, Y.-T. Hybrid slotted-csma/ca-tdma for efficient massive registration of iot devices. IEEE Access 2018, 6, 18366–18382. [Google Scholar] [CrossRef]
- Zhai, C.; Zou, Z.; Chen, Q.; Xu, L.; Zheng, L.-R.; Tenhunen, H. Delay-aware and reliability-aware contention-free mf–tdma protocol for automated rfid monitoring in industrial iot. J. Ind. Inf. Integr. 2016, 3, 8–19. [Google Scholar] [CrossRef]
- Ye, Q.; Zhuang, W. Token-based adaptive mac for a two-hop internet-of-things enabled manet. IEEE Internet Things J. 2017, 4, 1739–1753. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zeng, J.; Wan, Y.; Ma, F. A distributed tdma scheduling algorithm based on energy-topology factor in internet of things. IEEE Access 2017, 5, 10757–10768. [Google Scholar] [CrossRef]
- Bhatia, A.; Hansdah, R.C. A distributed tdma slot scheduling algorithm for spatially correlated contention in wsns. In Proceedings of the 2013 27th International Conference on Advanced Information Networking and Applications Workshops, Barcelona, Spain, 25–28 March 2013; pp. 377–384. [Google Scholar]
- Batta, M.S.; Aliouat, Z.; Harous, S. A distributed weight-based tdma scheduling algorithm for latency improvement in iot. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 0768–0774. [Google Scholar]
- Batta, M.S.; Harous, S.; Louail, L.; Aliouat, Z. A distributed tdma scheduling algorithm for latency minimization in internet of things. In Proceedings of the 2019 IEEE International Conference on Electro Information Technology (EIT), Brookings, SD, USA, 20–22 May 2019; pp. 108–113. [Google Scholar]
- Khan, R.; Ali, I.; Jan, M.A.; Zakarya, M.; Khan, M.A.; Alshamrani, S.S.; Guizani, M. A hybrid approach for a seamless and interoperable communication in the internet of things. IEEE Netw. Mag. 2021, 35, 202–208. [Google Scholar] [CrossRef]
- Son, H.; Jeong, C. Virtual mimo beamforming for opportunistic cooperative time division multiple access. IEEE Trans. Commun. 2020, 68, 7521–7532. [Google Scholar] [CrossRef]
- Sami, M.; Noordin, N.K.; Khabazian, M. A tdma-based cooperative mac protocol for cognitive networks with opportunistic energy harvesting. IEEE Commun. Lett. 2016, 20, 808–811. [Google Scholar] [CrossRef]
- Tiwari, J.; Prakash, A.; Tripathi, R. A novel cooperative mac protocol for safety applications in cognitive radio enabled vehicular ad-hoc networks. Veh. Commun. 2021, 29, 100336. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Deployment Area of the IoT | 1200 m × 1200 m |
Member Devices | 50–1000 |
Server Modules | 20 |
Preamble and Physical Headers | 15 us |
Length of Beacon | 75 to 110 bytes |
Back-off Time | random |
IFS & Gaurd Time | 40 us |
Slot | 70 us |
SNR p | 10 dB |
Feedback Bits | 8 Bits |
Energy () | 52,000 mAh |
Residual Energy () | – |
Transmission Power () | 91.4 mW |
Channel Delay () | 15 ms |
Receiving Power () | 59.1 mW |
Power Consumption (IM) | 1.27 mW |
Power Consumption (SM) | 15.4 μW |
Transceiver Energy () | 1 mW |
Transmission Range () | 500 m |
Receiving Power Threshold () | 1024 bits |
Packet Size () | 128 bytes |
Distance Between Devices | 300 m |
Sampling Interval | 10 s |
Topologies | Static and Random |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Khan, R.; Shah, N.; Ghani, A.; Chelloug, S.A.; Nisar, W.; Teo, J. Sensing and Device Neighborhood-Based Slot Assignment Approach for the Internet of Things. Appl. Sci. 2023, 13, 4682. https://doi.org/10.3390/app13084682
Khan M, Khan R, Shah N, Ghani A, Chelloug SA, Nisar W, Teo J. Sensing and Device Neighborhood-Based Slot Assignment Approach for the Internet of Things. Applied Sciences. 2023; 13(8):4682. https://doi.org/10.3390/app13084682
Chicago/Turabian StyleKhan, Mushtaq, Rahim Khan, Nadir Shah, Abdullah Ghani, Samia Allaoua Chelloug, Wasif Nisar, and Jason Teo. 2023. "Sensing and Device Neighborhood-Based Slot Assignment Approach for the Internet of Things" Applied Sciences 13, no. 8: 4682. https://doi.org/10.3390/app13084682
APA StyleKhan, M., Khan, R., Shah, N., Ghani, A., Chelloug, S. A., Nisar, W., & Teo, J. (2023). Sensing and Device Neighborhood-Based Slot Assignment Approach for the Internet of Things. Applied Sciences, 13(8), 4682. https://doi.org/10.3390/app13084682