Analysis of Loose Surrounding Rock Deformation and Slope Stability at Shallow Double-Track Tunnel Portal: A Case Study
Abstract
:1. Introduction
2. Project Overview
3. Numerical Modeling
3.1. Model Construction
3.2. Initial Conditions
3.3. Model Parameters
3.4. Support Conditions
4. Analysis, Results, and Discussion
4.1. Displacement Analysis
4.1.1. Surface Settlement
4.1.2. Tunnel-Surrounding Rock Deformation
4.1.3. Model Validation
4.2. Plastic Failure Analysis
5. Stability Analysis of Tunnel Slope
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konietzky, H.; Kamp, L.T.; Hammer, H.; Niedermeyer, S. Numerical modelling of in situ stress conditions as an aid in route selection for rail tunnels in complex geological formations in South Germany. Comput. Geotech. 2001, 28, 495–516. [Google Scholar] [CrossRef]
- Del Greco, O.; Oggeri, C. Reinforcement design and control of rock slopes above tunnel portals in northern Italy. Int. J. Rock Mech. Min. Sci. 2004, 41, 515. [Google Scholar] [CrossRef]
- Deng, X.; Xu, T.; Wang, R. Risk evaluation model of highway tunnel portal construction based on BP fuzzy neural network. Comput. Intell. Neurosci. 2018, 2018, 8547313. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Zhang, Z. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake. Soil Dyn. Earthq. Eng. 2013, 45, 45–55. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Zhang, H. Attribute recognition model and its application of risk assessment for slope stability at tunnel portal. J. Vibroengineering 2017, 19, 2726–2738. [Google Scholar] [CrossRef]
- Lei, M.; Lin, D.; Yang, W.; Shi, C.-H.; Peng, L.-M.; Huang, J. Model test to investigate failure mechanism and loading characteristics of shallow-bias tunnels with small clear distance. J. Cent. South Univ. 2016, 23, 3312–3321. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhang, D.L.; Fang, Q.; Su, W. Distribution of Surrounding Rock Pressure of Shallow Highway Tunnels with Small Spacing. China J. Highw. Transp. 2018, 31, 84. [Google Scholar]
- Hu, Z.; Shen, J.; Wang, Y.; Guo, T.; Liu, Z.; Gao, X. Cracking characteristics and mechanism of entrance section in asymmetrically-load tunnel with bedded rock mass: A case study of a highway tunnel in southwest China. Eng. Fail. Anal. 2021, 122, 105221. [Google Scholar] [CrossRef]
- Qiu, H.; Chen, X.; Wu, Q.; Wang, R.-C.; Zhao, W.-Y.; Qian, K.-J. Deformation mechanism and collapse treatment of the rock surrounding a shallow tunnel based on on-site monitoring. J. Mt. Sci. 2020, 17, 2897–2914. [Google Scholar] [CrossRef]
- Yang, C.; Hu, Z.; Huang, D.; Guo, F. Failure mechanism of primary support for a shallow and asymmetrically loaded tunnel portal and treatment measures. J. Perform. Constr. Facil. 2020, 34, 04019105. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Ding, L.; Wang, Y.; Song, Z. Construction stability analysis of large section highway tunnel portal section based on numerical analysis. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 643, p. 012176. [Google Scholar]
- Xiao, J.Z.; Dai, F.C.; Wei, Y.Q.; Xing, Y.C.; Cai, H.; Xu, C. Analysis of mechanical behavior in a pipe roof during excavation of a shallow bias tunnel in loose deposits. Environ. Earth Sci. 2016, 75, 293. [Google Scholar] [CrossRef]
- Song, D.; Liu, X.; Chen, Z.; Cai, J. Influence of tunnel excavation on the stability of a bedded rock slope: A case study on the mountainous area in southern Anhui, China. KSCE J. Civ. Eng. 2021, 25, 114–123. [Google Scholar] [CrossRef]
- Kaya, A.; Akgün, A.; Karaman, K.; Bulut, F. Understanding the mechanism of slope failure on a nearby highway tunnel route by different slope stability analysis methods: A case from NE Turkey. Bull. Eng. Geol. Environ. 2016, 75, 945–958. [Google Scholar] [CrossRef]
- Li, D.; Ma, S.; Lane, M.; Chang, P.; Crompton, B.; Hagen, S.A. Laboratory investigations into the failure mechanisms of new yielding and inflatable rockbolts under axial and shearing loading conditions. Rock Mech. Rock Eng. 2022, 56, 565–587. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Zhu, W. Analytical modelling of load–displacement performance of cable bolts incorporating cracking propagation. Rock Mech. Rock Eng. 2020, 53, 3471–3483. [Google Scholar] [CrossRef]
- Yang, X.L.; Huang, F. Collapse mechanism of shallow tunnel based on nonlinear Hoek–Brown failure criterion. Tunn. Undergr. Space Technol. 2011, 26, 686–691. [Google Scholar] [CrossRef]
- Senent, S.; Mollon, G.; Jimenez, R. Tunnel face stability in heavily fractured rock masses that follow the Hoek–Brown failure criterion. Int. J. Rock Mech. Min. Sci. 2013, 60, 440–451. [Google Scholar] [CrossRef]
- Hoek, E. Strength of rock and rock masses. ISRM News J. 1994, 2, 4–16. [Google Scholar]
- Hoek, E.; Kaiser, P.; Bawden, W. Support of Underground Excavations in Hard Rock; CRC Press: Rotterdam, The Netherlands, 2000. [Google Scholar]
- Cai, M.; Kaiser, P.K.; Uno, H.; Tasaka, Y.; Minami, M. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int. J. Rock Mech. Min. Sci. 2004, 41, 3–19. [Google Scholar] [CrossRef]
- Bertuzzi, R.; Douglas, K.; Mostyn, G. Improving the GSI Hoek-Brown criterion relationships. Int. J. Rock Mech. Min. Sci. 2016, 89, 185–199. [Google Scholar] [CrossRef]
- Cai, M. Practical estimates of tensile strength and Hoek–Brown strength parameter mi of brittle rocks. Rock Mech. Rock Eng. 2010, 43, 167–184. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. The Hoek–Brown failure criterion and GSI–2018 edition. J. Rock Mech. Geotech. Eng. 2019, 11, 445–463. [Google Scholar] [CrossRef]
- Hoek, E.; Diederichs, M.S. Empirical Estimation of Rock Mass Modulus. Int. J. Rock Mech. Min. Sci. 2006, 43, 203–215. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. JTG 3370.1-2018; Highway Tunnel Design Code; China Communications Press: Beijing, China, 2019.
- Zhou, P.; Shen, Y.; Zhao, J.; Zhang, X.; Gao, B.; Zhu, S. Study on the Disaster Mechanism of Steep Melanite Tunnel Based on Improvement Model. J. Rock Mech. Eng. 2019, 38, 1870–1883. [Google Scholar]
- St John, C.M.; Van Dillen, D.E. Rockbolts: A new numerical representation and its application in tunnel design. In Proceedings of the 24th US Symposium on Rock Mechanics (USRMS), College Station, TX, USA, 12–16 June 1983; OnePetro: Richardson, TX, USA, 1983. [Google Scholar]
- Illeditsch, M.; Preh, A.; Sausgruber, J.T. Challenges Assessing Rock Slope Stability Using the Strength Reduction Method with the Hoek–Brown Criterion on the Example of Vals (Tyrol/Austria). Geosciences 2022, 12, 255. [Google Scholar] [CrossRef]
Material Properties | Clay | Strongly Weathered Rock | Moderately Weathered Rock |
---|---|---|---|
Unit weight, γ (kN/m3) | 18.0 | 23.5 | 25.6 |
Young’s modulus/E (MPa) | 16 | 255 | 986 |
Poisson’s ratio/v | 0.40 | 0.35 | 0.30 |
Cohesion/c (kPa) | 25 | 50 | 200 |
Internal friction angle/(°) | 16 | 35 | 50 |
Hoek–Brown parameter/a | / | 0.5313 | 0.5114 |
Hoek–Brown parameter/mb | / | 0.287 | 0.574 |
Hoek–Brown parameter/s | / | 4.54 × 10−5 | 3.35 × 10−4 |
Saturated uniaxial compressive strength/(MPa) | / | 8.5 | 26.1 |
Support Items | Equivalent Density ρeq/(kg/m3) | Equivalent Elastic Modulus Eeq/(GPa) | Thickness/m | Poisson’s Ratio/v |
---|---|---|---|---|
Initial support | 2350 | 28.0 | 0.30 | 0.25 |
Secondary lining | 2500 | 32.5 | 0.35 | 0.20 |
Cable Properties | Value |
---|---|
Anchor rod section area/mm2 | 490.9 |
Anchor rod elastic modulus/GPa | 200 |
Anchor density/(kg·m−3) | 7850 |
Anchor rod tensile strength/MN | 0.2 |
Mortar shear modulus/GPa | 9.5 |
Unit-length mortar stiffness kg/GPa | 17.556 |
Mortar bonding force cg/(kg·m−1) | 159.40 |
Slot outer circumference/m | 0.139 |
Cement slurry friction angle/(°) | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zheng, H.; Hu, Z.; Liu, X.; Huang, Z. Analysis of Loose Surrounding Rock Deformation and Slope Stability at Shallow Double-Track Tunnel Portal: A Case Study. Appl. Sci. 2023, 13, 5024. https://doi.org/10.3390/app13085024
Li C, Zheng H, Hu Z, Liu X, Huang Z. Analysis of Loose Surrounding Rock Deformation and Slope Stability at Shallow Double-Track Tunnel Portal: A Case Study. Applied Sciences. 2023; 13(8):5024. https://doi.org/10.3390/app13085024
Chicago/Turabian StyleLi, Chenguang, Huanyu Zheng, Zhaojian Hu, Xiaofei Liu, and Zhen Huang. 2023. "Analysis of Loose Surrounding Rock Deformation and Slope Stability at Shallow Double-Track Tunnel Portal: A Case Study" Applied Sciences 13, no. 8: 5024. https://doi.org/10.3390/app13085024
APA StyleLi, C., Zheng, H., Hu, Z., Liu, X., & Huang, Z. (2023). Analysis of Loose Surrounding Rock Deformation and Slope Stability at Shallow Double-Track Tunnel Portal: A Case Study. Applied Sciences, 13(8), 5024. https://doi.org/10.3390/app13085024