XR Technology Deployment in Value Creation
Abstract
:Featured Application
Abstract
1. Introduction
- AR is created by overlaying the user’s real environment with virtual objects.
- MR is a coherent interaction between real and virtual users and objects.
- VR is a computer-generated simulation of a situation where the user can only interact with virtual objects in real time.
2. Theoretical Foundations and Background
2.1. Extended Reality Technologies
2.2. Value Creation
2.3. Existing Research on XR Technology Deployment in Value Creation
2.3.1. Research Strategy
- Logistics (in- and out-bound)
- Operations
- Marketing and sales
- Services
- Support activities (i.e., firm infrastructure, human resources, technology development, and procurement)
2.3.2. Research Reviews
2.3.3. Implementation Reports
3. Methodical Approach
4. Deployment Purposes of XR Technologies in Value Creation
4.1. Data Acquisition
4.2. Assistance
4.3. Visualization
4.4. Optimization
4.5. Collaboration
5. Discussion
5.1. Interrelations of the Proposed Taxonomy
5.2. Value-Added through XR Deployment Purposes
5.3. The Role of the Taxonomy in the Execution of an XR Solution
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biocca, F. Virtual Reality Technology: A Tutorial. J. Commun. 1992, 42, 23–72. [Google Scholar] [CrossRef]
- Steuer, J. Defining Virtual Reality: Dimensions Determining Telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Jezernik, A.; Hren, G. A solution to integrate computer-aided design (CAD) and virtual reality (VR) databases in design and manufacturing processes. Int. J. Adv. Manuf. Technol. 2003, 22, 768–774. [Google Scholar] [CrossRef]
- Bowman, D.A.; McMahan, R.P. Virtual Reality: How Much Immersion Is Enough? Computer 2007, 40, 36–43. [Google Scholar] [CrossRef]
- Bigné, E.; Llinares, C.; Torrecilla, C. Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. J. Bus. Res. 2016, 69, 1423–1427. [Google Scholar] [CrossRef]
- Chuah, S.H.-W. Why and Who Will Adopt Extended Reality Technology? Literature Review, Synthesis, and Future Research Agenda. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Fast-Berglund, Å.; Gong, L.; Li, D. Testing and validating Extended Reality (xR) technologies in manufacturing. Procedia Manuf. 2018, 25, 31–38. [Google Scholar] [CrossRef]
- Flavián, C.; Ibáñez-Sánchez, S.; Orús, C. The impact of virtual, augmented and mixed reality technologies on the customer experience. J. Bus. Res. 2018, 100, 547–560. [Google Scholar] [CrossRef]
- Stanney, K.M.; Nye, H.; Haddad, S.; Hale, K.S.; Padron, C.K.; Cohn, J.V. EXTENDED REALITY (XR) ENVIRONMENTS. In Handbook of Human Factors and Ergonomics; Salvendy, G., Karwowski, W., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 782–815. ISBN 978-1-119-63608-3. [Google Scholar]
- Farshid, M.; Paschen, J.; Eriksson, T.; Kietzmann, J. Go boldly! Bus. Horizons 2018, 61, 657–663. [Google Scholar] [CrossRef]
- Collins, J.; Regenbrecht, H.; Langlotz, T. Visual Coherence in Mixed Reality: A Systematic Enquiry. PRESENCE Virtual Augment. Real. 2017, 26, 16–41. [Google Scholar] [CrossRef]
- Speicher, M.; Hall, B.D.; Nebeling, M. What Is Mixed Reality? In Proceedings of the Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 2 May 2019; ACM: Glasgow Scotland, UK, 2019; pp. 1–15. [Google Scholar]
- Gattullo, M.; Scurati, G.W.; Fiorentino, M.; Uva, A.E.; Ferrise, F.; Bordegoni, M. Towards augmented reality manuals for industry 4.0: A methodology. Robot. Comput. Manuf. 2018, 56, 276–286. [Google Scholar] [CrossRef]
- Sutherland, I.E. The Ultimate Display. In Proceedings of the Congress of the International Federation of Information Processing (IFIP), New York, NY, USA, 24–29 May 1965; pp. 506–508. [Google Scholar]
- Curtis, D.; Mizell, D.W.; Gruenbaum, P.E.; Janin, A.L. Several Devils in the Details: Making an AR Application Work in the Airplane Factory. In Proceedings of the IWAR, San Francisco, CA, USA, 1 November 1998. [Google Scholar]
- Wang, W.; Wang, F.; Song, W.; Su, S. Application of Augmented Reality (AR) Technologies in inhouse Logistics. E3S Web Conf. 2020, 145, 02018. [Google Scholar] [CrossRef]
- Perkins Coie LLP. Augmented and Virtual Reality Survey Report; Perkins Coie LLP: Seattle, WA, USA, 2018. [Google Scholar]
- Dimensional Research. 2018 The State of Augmented and Virtual Reality; Dimensional Research: Sunnyvale, CA, USA, 2018. [Google Scholar]
- Chesbrough, H. Business Model Innovation: Opportunities and Barriers. Long Range Plan. 2010, 43, 354–363. [Google Scholar] [CrossRef]
- Gassmann, O.; Frankenberger, K.; Csik, M. The St. Gallen Business Model Navigator; Working Paper; Institute of Technology Management, University of St. Gallen: St. Gallen, Switzerland, 2013. [Google Scholar]
- Siew, C.; Ong, S.; Nee, A. A practical augmented reality-assisted maintenance system framework for adaptive user support. Robot. Comput. Manuf. 2019, 59, 115–129. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robot. Comput. Manuf. 2019, 58, 181–195. [Google Scholar] [CrossRef]
- Chung, C.; Peng, Q. Enabled dynamic tasks planning in Web-based virtual manufacturing environments. Comput. Ind. 2008, 59, 82–95. [Google Scholar] [CrossRef]
- Doty, D.H.; Glick, W.H. Typologies as a Unique Form of Theory Building: Toward Improved Understanding and Modeling. Acad. Manag. Rev. 1994, 19, 2. [Google Scholar] [CrossRef]
- Nickerson, R.C.; Varshney, U.; Muntermann, J. A method for taxonomy development and its application in information systems. Eur. J. Inf. Syst. 2013, 22, 336–359. [Google Scholar] [CrossRef]
- Porter, M.E. Technology and Competitive Advantage. J. Bus. Strat. 1985, 5, 60–78. [Google Scholar] [CrossRef]
- Sherman, W.R.; Craig, A.B. Understanding Virtual Reality: Interface, Application, and Design; Morgan Kaufmann Series in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers: Amsterdam, The Netherlands; Boston, MA, USA, 2003; ISBN 978-1-55860-353-0. [Google Scholar]
- Craig, A.B.; Sherman, W.R.; Will, J.D. Developing Virtual Reality Applications: Foundations of Effective Design; Morgan Kaufmann; Elsevier Science: Burlington, MA, USA; Oxford, UK, 2009; ISBN 978-0-12-374943-7. [Google Scholar]
- Wang, X.; Ong, S.K.; Nee, A.Y.C. A comprehensive survey of augmented reality assembly research. Adv. Manuf. 2016, 4, 1–22. [Google Scholar] [CrossRef]
- Egger, J.; Masood, T. Augmented reality in support of intelligent manufacturing—A systematic literature review. Comput. Ind. Eng. 2019, 140, 106195. [Google Scholar] [CrossRef]
- Mills, H. Software Development. IEEE Trans. Softw. Eng. 1976, SE-2, 265–273. [Google Scholar] [CrossRef]
- Mattioli, F.; Caetano, D.; Cardoso, A.; Lamounier, E. On the Agile Development of Virtual Reality Systems. In Proceedings of the Proceedings of the International Conference on Software Engineering Research and Practice (SERP), Athens, Greece, 1 May 2015; The Steering Committee of The World Congress in Computer Science. WorldComp: Athens, Greece, 2015. [Google Scholar]
- Konsynski, B.R.; Kottemann, J.E.; Jay, F.N., Jr.; Stott, J.W. plexsys-84: An Integrated Development Environment for Information Systems. J. Manag. Inf. Syst. 1984, 1, 64–104. [Google Scholar] [CrossRef]
- Chafle, G.; Das, G.; Dasgupta, K.; Kumar, A.; Mittal, S.; Mukherjea, S.; Srivastava, B. An Integrated Development Environment for Web Service Composition. In Proceedings of the IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, UT, USA, 9–13 July 2007; pp. 839–847. [Google Scholar]
- Berger, C.; Gerke, M. Comparison of selected augmented reality frameworks for integration in geographic citizen science projects. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B4-2, 223–230. [Google Scholar] [CrossRef]
- Norman, D.A. The Psychology of Everyday Things; Basic Books: New York, NY, USA, 1988; ISBN 978-0-465-06709-1. [Google Scholar]
- Lorenz, M.; Spranger, M.; Riedel, T.; Pürzel, F.; Wittstock, V.; Klimant, P. CAD to VR—A Methodology for the Automated Conversion of Kinematic CAD Models to Virtual Reality. Procedia CIRP 2016, 41, 358–363. [Google Scholar] [CrossRef]
- Chesbrough, H.; Rosenbloom, R.S. The role of the business model in capturing value from innovation: Evidence from Xerox Corporation’s technology spin-off companies. Ind. Corp. Chang. 2002, 11, 529–555. [Google Scholar] [CrossRef]
- Bowman, C.; Ambrosini, V. Value Creation Versus Value Capture: Towards a Coherent Definition of Value in Strategy. Br. J. Manag. 2000, 11, 1–15. [Google Scholar] [CrossRef]
- Richardson, J. The business model: An integrative framework for strategy execution. Strat. Chang. 2008, 17, 133–144. [Google Scholar] [CrossRef]
- Morris, M.; Schindehutte, M.; Allen, J. The entrepreneur’s business model: Toward a unified perspective. J. Bus. Res. 2005, 58, 726–735. [Google Scholar] [CrossRef]
- Osterwalder, A.; Pigneur, Y. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 30, ISBN 9780470876411. [Google Scholar]
- Amit, R.; Zott, C. Value creation in E-business. Strat. Manag. J. 2001, 22, 493–520. [Google Scholar] [CrossRef]
- Zott, C.; Amit, R. Business Model Design: An Activity System Perspective. Long Range Plan. 2010, 43, 216–226. [Google Scholar] [CrossRef]
- Baden-Fuller, C.; Haefliger, S. Business Models and Technological Innovation. Long Range Plan. 2013, 46, 419–426. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C.; Shahab, H.; Alt, F. What is XR? Towards a Framework for Augmented and Virtual Reality. Comput. Hum. Behav. 2022, 133, 107289. [Google Scholar] [CrossRef]
- Milgram, P.; Kishino, F. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Inf. Syst. 1994, E77-D, 1321–1329. [Google Scholar]
- Mann, S.; Furness, T.; Yuan, Y.; Iorio, J.; Wang, Z. All Reality: Virtual, Augmented, Mixed (X), Mediated (X, Y), and Multimediated Reality. arXiv 2018, arXiv:1804.08386. [Google Scholar]
- Motejlek, J.; Alpay, E. Taxonomy of Virtual and Augmented Reality Applications in Education. IEEE Trans. Learn. Technol. 2021, 14, 415–429. [Google Scholar] [CrossRef]
- Rothe, S.; Buschek, D.; Hußmann, H. Guidance in Cinematic Virtual Reality-Taxonomy, Research Status and Challenges. Multimodal Technol. Interact. 2019, 3, 19. [Google Scholar] [CrossRef]
- Van Krevelen, D.; Poelman, R. A survey of augmented reality technologies, applications and limitations. Int. J. Virtual Real. 2010, 9, 1–20. [Google Scholar] [CrossRef]
- Guttentag, D.A. Virtual reality: Applications and implications for tourism. Tour. Manag. 2010, 31, 637–651. [Google Scholar] [CrossRef]
- Fite-Georgel, P. Is There a Reality in Industrial Augmented Reality? In Proceedings of the 2011, 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 201–210. [Google Scholar]
- Berg, L.P.; Vance, J.M. Industry use of virtual reality in product design and manufacturing: A survey. Virtual Real. 2016, 21, 1–17. [Google Scholar] [CrossRef]
- Damiani, L.; Demartini, M.; Guizzi, G.; Revetria, R.; Tonelli, F. Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC-PapersOnLine 2018, 51, 624–630. [Google Scholar] [CrossRef]
- Cardoso, L.F.D.S.; Mariano, F.C.M.Q.; Zorzal, E. A survey of industrial augmented reality. Comput. Ind. Eng. 2019, 139, 106159. [Google Scholar] [CrossRef]
- Bonetti, F.; Warnaby, G.; Quinn, L. Augmented Reality and Virtual Reality in Physical and Online Retailing: A Review, Synthesis and Research Agenda. In Augmented Reality and Virtual Reality; Springer: Cham, Switzerland, 2018; pp. 119–132. [Google Scholar]
- Pantano, E.; Servidio, R. Modeling innovative points of sales through virtual and immersive technologies. J. Retail. Consum. Serv. 2012, 19, 279–286. [Google Scholar] [CrossRef]
- Choi, S.; Jo, H.; Lee, J.; Noh, S.D. A Rule-based System for the Automated Creation of VR Data for Virtual Plant Review. Concurr. Eng. 2010, 18, 165–183. [Google Scholar] [CrossRef]
- Li, X.; Yi, W.; Chi, H.-L.; Wang, X.; Chan, A.P. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Monahan, T.; McArdle, G.; Bertolotto, M. Virtual reality for collaborative e-learning. Comput. Educ. 2008, 50, 1339–1353. [Google Scholar] [CrossRef]
- Mayer, A.; Häfner, V.; Ovtcharova, J. Extending OpenSG for Real-Time Synchronization of Immersive Environments in Distributed Collaboration. In Proceedings of the Virtual Reality International Conference (VRIC), Laval, France, 7–9 July 2021. [Google Scholar]
- Vasarainen, M.; Paavola, S.; Vetoshkina, L. A Systematic Literature Review on Extended Reality: Virtual, Augmented and Mixed Reality in Working Life. Int. J. Virtual Real. 2021, 21, 1–28. [Google Scholar] [CrossRef]
- Korbel, J.J.; Riar, M.; Wiegmann, L.; Zarnekow, R. Augmented Reality in E-Procurement: Opportunities and Challenges. In Proceedings of the PACIS 2022 Proceedings, Taipei, Taiwan; Sydney, Australia, 5–9 July 2022; p. 112. Available online: https://aisel.aisnet.org/pacis2022/112 (accessed on 13 March 2023).
- Nee, A.Y.C.; Ong, S.K.; Chryssolouris, G.; Mourtzis, D. Augmented reality applications in design and manufacturing. CIRP Ann. 2012, 61, 657–679. [Google Scholar] [CrossRef]
- Choi, S.; Jo, H.; Boehm, S.; Noh, S.D. ONESVIEW: An Integrated System for One-Stop Virtual Design Review. Concurr. Eng. 2010, 18, 75–91. [Google Scholar] [CrossRef]
- Masoni, R.; Ferrise, F.; Bordegoni, M.; Gattullo, M.; Uva, A.E.; Fiorentino, M.; Carrabba, E.; Di Donato, M. Supporting Remote Maintenance in Industry 4.0 through Augmented Reality. Procedia Manuf. 2017, 11, 1296–1302. [Google Scholar] [CrossRef]
- Peng, G.; Hou, X.; Gao, J.; Cheng, D. A visualization system for integrating maintainability design and evaluation at product design stage. Int. J. Adv. Manuf. Technol. 2011, 61, 269–284. [Google Scholar] [CrossRef]
- Scholz, J.; Smith, A.N. Augmented reality: Designing immersive experiences that maximize consumer engagement. Bus. Horizons 2016, 59, 149–161. [Google Scholar] [CrossRef]
- Oberländer, A.M.; Lösser, B.; Rau, D. Taxonomy research in information systems: A systematic assessment. In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm and Uppsala, Sweden, 8–14 June 2019. [Google Scholar]
- Correia, A.; Grover, A.; Schneider, D.; Pimentel, A.P.; Chaves, R.; de Almeida, M.A.; Fonseca, B. Designing for Hybrid Intelligence: A Taxonomy and Survey of Crowd-Machine Interaction. Appl. Sci. 2023, 13, 2198. [Google Scholar] [CrossRef]
- Weking, J.; Stöcker, M.; Kowalkiewicz, M.; Böhm, M.; Krcmar, H. Leveraging industry 4.0—A business model pattern framework. Int. J. Prod. Econ. 2019, 225, 107588. [Google Scholar] [CrossRef]
- Remane, G.; Nickerson, R.; Hanelt, A.; Tesch, J.; Kolbe, L. A Taxonomy of Carsharing Business Models. In Proceedings of the In Proceedings of the ICIS 2016 Proceedings 2016, Dublin, Ireland, 11–14 December 2016. [Google Scholar]
- Davenport, T.H. Process Innovation: Reengineering Work through Information Technology; Harvard Business School Press: Boston, MA, USA, 1993; ISBN 978-0-87584-366-7. [Google Scholar]
- Çöltekin, A.; Lochhead, I.; Madden, M.; Christophe, S.; Devaux, A.; Pettit, C.; Lock, O.; Shukla, S.; Herman, L.; Stachoň, Z.; et al. Extended Reality in Spatial Sciences: A Review of Research Challenges and Future Directions. ISPRS Int. J. Geo-Inform. 2020, 9, 439. [Google Scholar] [CrossRef]
- Narbutt, M.; O’Leary, S.; Allen, A.; Skoglund, J.; Hines, A. Streaming VR for Immersion: Quality Aspects of Compressed Spatial Audio. In Proceedings of the 2017 23rd International Conference on Virtual System & Multimedia (VSMM), Dublin, Ireland, 31 October–4 November 2017; pp. 1–6. [Google Scholar]
- Ramsamy, P.; Haffegee, A.; Jamieson, R.; Alexandrov, V. Using Haptics to Improve Immersion in Virtual Environments. In Proceedings of the Computational Science—ICCS 2006, Reading, UK, 28–31 May 2006; pp. 603–609. [Google Scholar]
- del Amo, I.F.; Erkoyuncu, J.A.; Roy, R.; Wilding, S. Augmented Reality in Maintenance: An information-centred design framework. Procedia Manuf. 2018, 19, 148–155. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, C.; Xu, X. Visualisation of the Digital Twin data in manufacturing by using Augmented Reality. Procedia CIRP 2019, 81, 898–903. [Google Scholar] [CrossRef]
- Stoltz, M.-H.; Giannikas, V.; McFarlane, D.; Strachan, J.; Um, J.; Srinivasan, R. Augmented Reality in Warehouse Operations: Opportunities and Barriers. IFAC-PapersOnLine 2017, 50, 12979–12984. [Google Scholar] [CrossRef]
- Ma, J.Y.; Choi, J.S. The Virtuality and Reality of Augmented Reality. J. Multimedia 2007, 2, 32–37. [Google Scholar] [CrossRef]
- Yim, M.Y.-C.; Park, S.-Y. I am not satisfied with my body, so I like augmented reality (AR). J. Bus. Res. 2018, 100, 581–589. [Google Scholar] [CrossRef]
- Heller, J.; Chylinski, M.; de Ruyter, K.; Mahr, D.; Keeling, D.I. Let Me Imagine That for You: Transforming the Retail Frontline Through Augmenting Customer Mental Imagery Ability. J. Retail. 2019, 95, 94–114. [Google Scholar] [CrossRef]
- Choi, S.; Jung, K.; Noh, S.D. Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurr. Eng. 2015, 23, 40–63. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.-Y.; Nee, A.Y.C. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef]
- Woll, R.; Damerau, T.; Wrasse, K.; Stark, R. Augmented Reality in a Serious Game for Manual Assembly Processes. In Proceedings of the 2011 IEEE International Symposium on Mixed and Augmented Reality—Arts, Media and Humanities, Basel, Switzerland, 26–29 October 2011; pp. 37–39. [Google Scholar]
- Ovtcharova, J. Lectures on Virtual Engineering. 2020. [Google Scholar]
- Rasch, R.F.R. The Nature of Taxonomy. Image J. Nurs. Sch. 1987, 19, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Brown, T. Design Thinking. Harvard Bus. Rev. 2008, 86, 84–141. [Google Scholar]
- Dolata, M.; Schwabe, G. Design Thinking in IS Research Projects. In Design Thinking for Innovation; Brenner, W., Uebernickel, F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 67–83. ISBN 978-3-319-26098-3. [Google Scholar]
- Blackburn-Grenon, F.; Abran, A.; Rioux, M.; Wong, T. A Team-Based Workshop to Capture Organizational Knowledge for Identifying AI Proof-of-Value Projects. IEEE Eng. Manag. Rev. 2021, 49, 181–195. [Google Scholar] [CrossRef]
- Venkatraman, M. It-Enabled Business Transformation: From Automation to Business Scope Redefinition. Sloan Manag. Rev. 1994, 35, 73–87. [Google Scholar]
- de Regt, A.; Barnes, S.J.; Plangger, K. The virtual reality value chain. Bus. Horizons 2020, 63, 737–748. [Google Scholar] [CrossRef]
- Simões, B.; Creus, C.; del Puy Carretero, M.; Guinea Ochaíta, Á. Streamlining XR Technology Into Industrial Training and Maintenance Processes. In Proceedings of the The 25th International Conference on 3D Web Technology, Virtual Event, 9 November 2020; pp. 1–7. [Google Scholar]
Source | Technology Comprehensiveness | Use Case Comprehensiveness | Summary |
---|---|---|---|
[6] | XR | Generic | Generic prerequisites for adopting XR technologies |
[57] | VR and AR | Retail | Identification of fragmented research landscape and future research agenda |
[30] | AR | Manufacturing | Technological, organizational, and environmental challenges for AR deployment in manufacturing |
[52] | VR | Tourism | Significance and potentials of VR for the tourism value chain |
[54] | VR | Manufacturing | Relevance of VR for product design and challenges for deployment and suggestion of an implementation process |
[55] | XR | Industrial | Key technologies and applications of XR in industrial system engineering |
[56] | AR | Industrial | Benefits, challenges, development, industrial distribution, and purposes of AR in industry |
[60] | XR | Construction safety | Synthesizing current research characteristics, existing use cases and trends for future development |
[65] | AR | Design and manufacturing | Presentation of relevant AR applications for manufacturing and future importance of AR |
[51] | AR | Generic | Distribution of AR technology characteristics and potential use case scenarios across industries |
[63] | XR | Collaboration | Training, design collaboration and remote collaboration as major XR use cases in the field of collaboration |
[29] | AR | Assembly tasks | Comprehensive summary of AR assembly system setup as well as training, simulation, and planning as application fields |
[16] | AR | Inhouse logistics | Long-list of potential use case scenarios for AR in inhouse logistics |
Source | Technology Comprehensiveness | Use Case Comprehensiveness | Summary |
---|---|---|---|
[5] | CAVE VR | Sales-oriented customer analysis | VR-based study to analyze customer behavior |
[66] | VR configuration | Design review process | System suggestion for deploying VR in design review process |
[59] | VR model creation | Plant design review | Rule-based system to automatically transfer CAD data to VR for design reviews |
[23] | Web VR | Manufacturing task planning | Web VR-based tool for executing planning of task execution in a dynamic context |
[13] | AR content creation | Employee guidance in manufacturing | Methodology for converting manuals to AR content in production environment |
[67] | AR application | Maintenance task performance | Concept for collaborative assistance in maintenance processes through AR |
[62] | VR engine enhancement | Generic collaboration scenario | Method for enabling synchronization in a segregated immersive collaboration environment |
[61] | VR setup | Generic learning scenario | Setup for VR-based e-learning with multiple users |
[58] | XR | Point-of-sales modelling | Framework for enhancing customer touchpoints through VR and AR |
[21] | Adaptive AR system | Assistance in maintenance task execution | System for AR-assisted support in executing maintenance tasks with adaption to user requirements |
[68] | VR system | Reviewing product design | VR-based system for collaborative product design review |
[69] | AR paradigms | Customer engagement | Guidelines for AR deployment with the focus on customer engagement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krodel, T.; Schott, V.; Ovtcharova, J. XR Technology Deployment in Value Creation. Appl. Sci. 2023, 13, 5048. https://doi.org/10.3390/app13085048
Krodel T, Schott V, Ovtcharova J. XR Technology Deployment in Value Creation. Applied Sciences. 2023; 13(8):5048. https://doi.org/10.3390/app13085048
Chicago/Turabian StyleKrodel, Tim, Vera Schott, and Jivka Ovtcharova. 2023. "XR Technology Deployment in Value Creation" Applied Sciences 13, no. 8: 5048. https://doi.org/10.3390/app13085048
APA StyleKrodel, T., Schott, V., & Ovtcharova, J. (2023). XR Technology Deployment in Value Creation. Applied Sciences, 13(8), 5048. https://doi.org/10.3390/app13085048