A Compact Super-Wideband High Bandwidth Dimension Ratio Octagon-Structured Monopole Antenna for Future-Generation Wireless Applications
Abstract
:1. Introduction
2. Antenna Design Methodology
Evaluations of SWB Monopole Antenna Configuration
3. Results and Discussion
3.1. Electromagnetic Characteristics
3.2. Radiation Characteristics
3.3. Surface Current Analysis
3.4. Gain and Radiation Efficiency Characteristics
3.5. Fabricated Prototype and Measured Results
4. Comparison of Proposed Monopole SWB Antenna with Reported Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, F.; Pi, Z. mmWave mobile broadband (MMB): Unleashing the 3–300GHz spectrum. In Proceedings of the 34th IEEE Sarnoff Symposium, Princeton, NJ, USA, 16 June 2011; pp. 1–6. [Google Scholar]
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of millimeter wave communications for fifth-generation (5G) wireless networks—With a focus on propagation models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- FCC. First Report and Order in the Matter of Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems; FCC: Washington, DC, USA, 2002; pp. 98–153. ISSN 1937-8718.
- Wiesbeck, W.; Adamiuk, G.; Sturm, C. Basic properties and design principles of UWB antennas. Proc. IEEE 2009, 97, 372–385. [Google Scholar] [CrossRef]
- Rumsey, V. Frequency independent antennas. In Proceedings of the 1958 IRE International Convention Record, New York, NY, USA, 20–23 August 1957; pp. 114–118. [Google Scholar]
- Balani, W.; Sarvagya, M.; Ali, T.; Pai, M.M.; Anguera, J.; Andujar, A.; Das, S. Design techniques of super-wideband Antenna–Existing and future prospective. IEEE Access 2019, 7, 141241–141257. [Google Scholar] [CrossRef]
- Ali, T.; Subhash, B.K.; Pathan, S.; Biradar, R.C. A compact decagonal-shaped UWB monopole planar antenna with truncated ground plane. Microw. Opt. Technol. Lett. 2018, 60, 2937–2944. [Google Scholar] [CrossRef]
- Chen, K.R.; Row, J.S. A compact monopole antenna for super wideband applications. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 488–491. [Google Scholar] [CrossRef]
- Balani, W.; Sarvagya, M.; Samasgikar, A.; Ali, T.; Kumar, P. Design and analysis of super wideband antenna for microwave applications. Sensors 2021, 21, 477. [Google Scholar] [CrossRef]
- Maity, S.; Tewary, T.; Mukherjee, S.; Roy, A.; Sarkar, P.P.; Bhunia, S. Super wideband high gain hybrid microstrip patch antenna. AEU-Int. J. Electron. Commun. 2022, 153, 154264. [Google Scholar] [CrossRef]
- Samsuzzaman, M.; Islam, M.T. A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio. Microw. Opt. Technol. Lett. 2015, 57, 445–452. [Google Scholar] [CrossRef]
- Dey, S.; Arefin, M.S.; Karmakar, N.C. Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G. IEEE Access 2021, 9, 46698–46708. [Google Scholar] [CrossRef]
- Barbarino, S.; Consoli, F. Study on super-wideband planar asymmetrical dipole antennas of circular shape. IEEE Trans. Antennas Propag. 2010, 58, 4074–4078. [Google Scholar] [CrossRef]
- Ayyappan, M.; Patel, P. On design of a triple elliptical super wideband antenna for 5G applications. IEEE Access 2022, 10, 76031–76043. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K. Small-size scarecrow-shaped CPW and microstrip-line-fed UWB antennas. J. Comput. Electron. 2018, 17, 1047–1055. [Google Scholar] [CrossRef]
- Rahman, S.U.; Cao, Q.; Ullah, H.; Khalil, H. Compact design of trapezoid shape monopole antenna for SWB application. Microw. Opt. Technol. Lett. 2019, 61, 1931–1937. [Google Scholar] [CrossRef]
- Mondal, T.; Maity, S.; Ghatak, R.; Bhadra Chaudhuri, S.R. Design and analysis of a wideband circularly polarised perturbed psi-shaped antenna. IET Microw. Antennas Propag. 2018, 12, 1582–1586. [Google Scholar] [CrossRef]
- Singhal, S.; Singh, A.K. Elliptical monopole based super wideband fractal antenna. Microw. Opt. Technol. Lett. 2020, 62, 1324–1328. [Google Scholar] [CrossRef]
- Okan, T. A compact octagonal-ring monopole antenna for super wideband applications. Microw. Opt. Technol. Lett. 2020, 62, 1237–1244. [Google Scholar] [CrossRef]
- Dhasarathan, V.; Sharma, M.; Kapil, M.; Vashist, P.C.; Patel, S.K.; Nguyen, T.K. Integrated bluetooth/LTE2600 superwideband monopole antenna with triple notched (WiMAX/WLAN/DSS) band characteristics for UWB/X/Ku band wireless network applications. Wirel. Netw. 2020, 26, 2845–2855. [Google Scholar] [CrossRef]
- Sharma, V.; Deegwal, J.K.; Mathur, D. Super-wideband compact offset elliptical ring patch antenna for 5G applications. Wirel. Pers. Commun. 2022, 122, 1655–1670. [Google Scholar] [CrossRef]
- Kundu, S.; Chatterjee, A. A compact super wideband antenna with stable and improved radiation using super wideband frequency selective surface. AEU-Int. J. Electron. Commun. 2022, 150, 154200. [Google Scholar] [CrossRef]
- Singhal, S.; Singh, A.K. CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microw. Antennas Propag. 2016, 10, 1701–1707. [Google Scholar] [CrossRef]
- Waladi, V.; Mohammadi, N.; Zehforoosh, Y.; Habashi, A.; Nourinia, J. A novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 651–654. [Google Scholar] [CrossRef]
- Mythili, P.; Das, A. Simple approach to determine resonant frequencies of microstrip antennas. IEE Proc.-Microw. Antennas Propag. 1998, 145, 159–162. [Google Scholar] [CrossRef]
- Ray, K.P.; Kumar, G. Determination of the resonant frequency of microstrip antennas. Microw. Opt. Technol. Lett. 1999, 23, 114–117. [Google Scholar] [CrossRef]
Design Parameters | Dimensions | Design Parameters | Dimensions |
---|---|---|---|
Lf | 6.3 | D1 | 5.45 |
Wf | 1.5 | D2 | 5.45 |
Lg | 6 | D3 | 3.8 |
S | 3.45 | D4 | 1.8 |
R | 4.5 | W1 | 1.5 |
Ls | 16 | W2 | 2 |
Ws | 14 |
S. No | Design | Operating Bandwidth, GHz | Impedance Bandwidth, GHz | Bandwidth Ratio, BR | Fractional Bandwidth, FBW % | VSWR |
---|---|---|---|---|---|---|
1 | Iteration 1 | 3.49–33.18 | 29.69 | 9.507 | 161.93% | 1.03 |
2 | Iteration 2 | 3.43–32.10 | 28.67 | 9.35 | 161.38% | 1.06 |
34.32–77.05 | 42.73 | 2.24 | 76.73% | 1.14 | ||
79.37–94.19 | 14.82 | 1.18 | 17.07% | 1.08 | ||
100.27–115.83 | 15.56 | 1.15 | 14.40% | 1.44 | ||
116.65–177.75 | 61.1 | 1.52 | 41.50% | 1.09 | ||
184.63–208.21 | 23.58 | 1.12 | 12.00% | 1.09 | ||
212.68–231.20 | 18.52 | 1.08 | 8.34% | 1.35 | ||
3 | Iteration 3 | 3.54–33.69 | 30.15 | 9.51 | 161.96% | 1.04 |
45.28–147.10 | 101.82 | 3.24 | 105.85% | 1.06 | ||
4 | Iteration 4 | 3.54–33.11 | 29.57 | 9.35 | 161.36% | 1.02 |
37.17–120.58 | 83.41 | 3.24 | 105.75% | 1.10 | ||
5 | Iteration 5 | 3.37–43.80 | 40.43 | 12.99 | 171.42% | 1.04 |
47.15–58.82 | 11.67 | 1.24 | 22.08% | 1.11 | ||
60.47–77.98 | 17.51 | 1.29 | 25.29% | 1.07 | ||
81.87–101.92 | 20.05 | 1.24 | 21.81% | 1.23 | ||
103.88–113.03 | 9.15 | 1.08 | 8.43% | 1.13 | ||
116.49–157.39 | 40.9 | 1.35 | 29.86% | 1.13 | ||
171.96–307.24 | 135.28 | 1.78 | 56.46% | 1.23 | ||
6 | Iteration 6 | 3.71–337.88 | 334.17 | 91.07 | 195.65% | 1.02 |
S. No | Resonant Frequency | Resistance, Rin | Reactance, Xin | Input Impedance, Zin |
---|---|---|---|---|
1 | 24.1 GHz | 47.48 Ω | 1.54 Ω | 47.48 + j1.54 Ω |
2 | 67.1 GHz | 55.45 Ω | −6.93 Ω | 55.45 − j6.93 Ω |
3 | 129.1 GHz | 53.16 Ω | −3.97 Ω | 53.16 − j3.97 Ω |
4 | 249.1 GHz | 50.96 Ω | −0.65 Ω | 50.96 − j0.65 Ω |
5 | 287.1 GHz | 47.39 Ω | −2.85 Ω | 47.39 − j2.85 Ω |
Ref. | P.S, mm2 | E.S, λo2 | fl, GHz | fh, GHz | IBW, GHz | FBW, % | BR | BDR | S11, dB | G, dB | η, % |
---|---|---|---|---|---|---|---|---|---|---|---|
Tiwari et al. [15] | 25 × 20 | 0.20 × 0.16 | 2.51 | 16.48 | 13.97 | 147.13 | 6.57 | 4597.81 | −20 | 5.5 | NR |
Mondal et al. [17] | 58.2 × 47.7 | 0.97 × 0.8 | 5 | 7 | 2 | 33.33 | 1.40 | 43.23 | −22.5 | NR | NR |
Rahman et al. [16] | 57 × 34 | 0.26 × 0.16 | 1.42 | 90 | 88.58 | 193.70 | 63.38 | 4483.79 | −41 | 7.67 | 98.9 |
Singhal et al. [18] | 170 × 150 | 0.37 × 0.33 | 0.65 | 35.61 | 34.96 | 192.83 | 54.78 | 1610.83 | NR | 6.51 | NR |
Okan et al. [19] | 40 × 40 | 0.35 × 0.35 | 2.59 | 31.14 | 28.55 | 169.29 | 12.02 | 1419.52 | −39 | 2–5 | 90–99 |
Dhasarathan et al. [20] | 28 × 20 | 0.21 × 0.15 | 2.34 | 20 | 17.66 | 158.10 | 8.55 | 5019.11 | −20 | 5.25 | NR |
Sharma et al. [21] | 39 × 39 | 0.3 × 0.3 | 2.31 | 40 | 37.69 | 178.16 | 17.32 | 1975.62 | −40 | 5.81 | NR |
Ayyappan et al. [14] | 27 × 29.5 | 0.17 × 0.187 | 1.91 | 43.5 | 41.59 | 188.51 | 22.77 | 5761.87 | −62 | 8.15 | 90.08 |
This Work | 14 × 16 | 0.16 × 0.18 | 3.71 | 337.88 | 334.17 | 195.65% | 91.07 | 6057.27 | −38.77 | 18.01 | 62–95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suguna, N.; Revathi, S. A Compact Super-Wideband High Bandwidth Dimension Ratio Octagon-Structured Monopole Antenna for Future-Generation Wireless Applications. Appl. Sci. 2023, 13, 5057. https://doi.org/10.3390/app13085057
Suguna N, Revathi S. A Compact Super-Wideband High Bandwidth Dimension Ratio Octagon-Structured Monopole Antenna for Future-Generation Wireless Applications. Applied Sciences. 2023; 13(8):5057. https://doi.org/10.3390/app13085057
Chicago/Turabian StyleSuguna, Naineri, and Senthil Revathi. 2023. "A Compact Super-Wideband High Bandwidth Dimension Ratio Octagon-Structured Monopole Antenna for Future-Generation Wireless Applications" Applied Sciences 13, no. 8: 5057. https://doi.org/10.3390/app13085057
APA StyleSuguna, N., & Revathi, S. (2023). A Compact Super-Wideband High Bandwidth Dimension Ratio Octagon-Structured Monopole Antenna for Future-Generation Wireless Applications. Applied Sciences, 13(8), 5057. https://doi.org/10.3390/app13085057