Fine-Tuning of Pre-Trained Deep Face Sketch Models Using Smart Switching Slime Mold Algorithm
Abstract
:1. Introduction
- To propose an improved method for solving large-scale problems, which is called S2SMA. This work presents S2SMA with embedded rules and operations, namely AOA and LF. The AOA operation aims to solve the problem of SMA’s limited exploitation. Moreover, the LF mechanism has been integrated to improve SMA’s exploratory capability and aid in maintaining an appropriate balance between exploration and exploitation [38]. Furthermore, the proposed embedded smart switching rules allow for adaptive switching between search operations during execution.
- To formulate an optimized deep-face sketch recognition problem by fine-tuning the weights of deep features using S2SMA. As such, S2SMA tunes the weights of the outputs of the deep-face models to maximize the similarity between sketch–photo pairs. Here, S2SMA adjusts the weights of these models’ outputs to fit the face sketch recognition problem.
- To further enhance the deep-face sketch recognition by fine-tuning multiple deep models, four deep-face models specialized in facial recognition are used in this study: FaceNet [21], ArcFace [22], VGG-Face [23], and DeepFace [24]. These models are combined, and the proposed S2SMA gives weight to each model to obtain the highest accuracy for the face sketch recognition problem.
2. Related Work
3. Proposed SMA-Based Method
3.1. The Original Slime Mold Algorithm (SMA)
3.1.1. Approaching Food
3.1.2. Wrapping Food
3.1.3. Grabbling Food
3.2. Smart Switching Slime Mold Algorithm (S2SMA)
- The first improvement, the SMA exploration phase, has been improved by incorporating LF into the original equation that updates the slime’s position in the wrap food phase in Equation (7).
- The second improvement, an embedded operation, was added from the AOA algorithm [59] to improve the exploitation phase further.
- The final improvement, a total of four embedded switching rules have been added to control switching between AOA, LF, and other SMA search operations.
3.2.1. The Proposed Embedded Levy Flight
3.2.2. Embedded Arithmetic Operation (EAO)
3.2.3. The Proposed Embedded Smart Switching Rules
Algorithm 1: Pseudo-code of proposed method |
Input and . ; ; While Calculate the fitness of all slime molds; ; Calculate the by Equation (5); For do If) then ; Else ; ; For each dimension do If () then ; Else) then ; Else ; End If End End If End ; End While Output: ; |
3.3. Fine-Tuning of Pre-Trained Deep-Face Sketch Using S2SMA
3.3.1. Fine-Tuning of Single Pre-Trained Deep Models
3.3.2. Fine-Tuning of Multiple Pre-Trained Deep Models
4. Experimental Results and Analysis
4.1. Evaluation on Large-Scale Benchmark Problems (CEC’2010)
4.1.1. The Influence of Population Size
4.1.2. Performance Analysis
4.1.3. Convergence Evaluation
4.1.4. Statistical Analysis
4.1.5. Execution Time Analysis
4.2. Evaluation on Face Sketch Recognition
4.2.1. Case Study I: XM2VTS Dataset
The Mean Recognition Rates
The Cumulative Matching Characteristic
Fitness Value Analysis
Convergence Evaluation
Statistical Analysis
4.2.2. Case Study II: CUFSF Dataset
The Mean Recognition Rates
The Cumulative Matching Characteristic
Fitness Value Analysis
Comparison with the Reported Results
5. Future Perspective of the Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samma, H.; Suandi, S.A.; Mohamad-Saleh, J. Face sketch recognition using a hybrid optimization model. Neural Comput. Appl. 2019, 31, 6493–6508. [Google Scholar] [CrossRef]
- Radman, A.; Suandi, S.A. A Superpixel-Wise Approach for Face Sketch Synthesis. IEEE Access 2019, 7, 108838–108849. [Google Scholar] [CrossRef]
- Radman, A.; Suandi, S.A. BiLSTM regression model for face sketch synthesis using sequential patterns. Neural Comput. Appl. 2021, 33, 12689–12702. [Google Scholar] [CrossRef]
- Radman, A.; Suandi, S.A. Robust face pseudo-sketch synthesis and recognition using morphological-arithmetic operations and HOG-PCA. Multimed. Tools Appl. 2018, 77, 25311–25332. [Google Scholar] [CrossRef]
- Radman, A.; Sallam, A.; Suandi, S.A. Deep residual network for face sketch synthesis. Expert Syst. Appl. 2022, 190, 115980. [Google Scholar] [CrossRef]
- Galea, C.; Farrugia, R.A. Matching Software-Generated Sketches to Face Photographs with a Very Deep CNN, Morphed Faces, and Transfer Learning. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1421–1431. [Google Scholar] [CrossRef]
- Liu, D.; Gao, X.; Wang, N.; Peng, C.; Li, J. Iterative local re-ranking with attribute guided synthesis for face sketch recognition. Pattern Recognit. 2021, 109, 107579. [Google Scholar] [CrossRef]
- Qi, X.; Sun, M.; Wang, W.; Dong, X.; Li, Q.; Shan, C. Face Sketch Synthesis via Semantic-Driven Generative Adversarial Network. In Proceedings of the International Joint Conference on Biometrics (IJCB), Shenzhen, China, 4–7 August 2021; pp. 1–8. [Google Scholar]
- Bae, S.; Din, N.U.; Park, H.; Yi, J. Face Photo-Sketch Recognition Using Bidirectional Collaborative Synthesis Network. In Proceedings of the 16th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Republic of Korea, 3–5 January 2022; pp. 1–8. [Google Scholar]
- Wan, W.; Lee, H.J. Generative adversarial multi-task learning for face sketch synthesis and recognition. In Proceedings of the International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 4065–4069. [Google Scholar]
- Tu, C.-T.; Chan, Y.-H.; Chen, Y.-C. Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network. IEEE Trans. Image Process. 2016, 25, 3546–3561. [Google Scholar] [CrossRef]
- Kan, M.; Shan, S.; Zhang, H.; Lao, S.; Chen, X. Multi-view discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Gao, Y.; Shi, Y.; Yin, H. Cross-Modal Metric Learning for AUC Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4844–4856. [Google Scholar] [CrossRef]
- Han, H.; Klare, B.F.; Bonnen, K.; Jain, A.K. Matching Composite Sketches to Face Photos: A Component-Based Approach. IEEE Trans. Inf. Forensics Secur. 2012, 8, 191–204. [Google Scholar] [CrossRef]
- Klare, B.; Li, Z.; Jain, A.K. Matching Forensic Sketches to Mug Shot Photos. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Gao, Y.; Shi, Y.; Yang, W.; Yin, H. Heterogeneous Face Recognition by Margin-Based Cross-Modality Metric Learning. IEEE Trans. Cybern. 2017, 48, 1814–1826. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xue, X.; Wu, Y.; Mao, X. Matching a composite sketch to a photographed face using fused HOG and deep feature models. Vis. Comput. 2021, 37, 765–776. [Google Scholar] [CrossRef]
- Bhatt, H.S.; Bharadwaj, S.; Singh, R.; Vatsa, M. Memetically Optimized MCWLD for Matching Sketches with Digital Face Images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1522–1535. [Google Scholar] [CrossRef]
- Bhatt, H.S.; Bharadwaj, S.; Singh, R.; Vatsa, M. On matching sketches with digital face images. In Proceedings of the 4th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington, DC, USA, 27–29 September 2010. [Google Scholar]
- Samma, H.; Suandi, S.A.; Mohamad-saleh, J. A Hybrid Deep Learning Model for Face Sketch Recognition. In Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications, Penang, Malaysia, 2022; pp. 545–551. [Google Scholar]
- Champandard, A.J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4690–4699. [Google Scholar]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition; University of Oxford: Oxford, UK, 2015. [Google Scholar]
- Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. [Google Scholar]
- Wan, W.; Gao, Y.; Lee, H.J. Transfer deep feature learning for face sketch recognition. Neural Comput. Appl. 2019, 31, 9175–9184. [Google Scholar] [CrossRef]
- Abdullah, J.M.; Ahmed, T. Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process. IEEE Access 2019, 7, 43473–43486. [Google Scholar] [CrossRef]
- Shamsaldin, A.S.; Rashid, T.A.; Agha, R.A.A.-R.; Al-Salihi, N.K.; Mohammadi, M. Donkey and smuggler optimization algorithm: A collaborative working approach to path finding. J. Comput. Des. Eng. 2019, 6, 562–583. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Hayyolalam, V.; Kazem, A.A.P. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103249. [Google Scholar] [CrossRef]
- Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [Google Scholar] [CrossRef]
- Hamad, Q.S.; Samma, H.; Suandi, S.A.; Mohamad-Saleh, J. Q-learning embedded sine cosine algorithm (QLESCA). Expert Syst. Appl. 2022, 193, 116417. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, P.; Heidari, A.A.; Chen, H.; Turabieh, H.; Mafarja, M.; Li, C. Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease. Comput. Biol. Med. 2021, 134, 104427. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Wang, H.-J.; Dao, T.-K.; Pan, J.-S.; Liu, J.-H.; Weng, S. An Improved Slime Mold Algorithm and its Application for Optimal Operation of Cascade Hydropower Stations. IEEE Access 2020, 8, 226754–226772. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Elaziz, M.A. Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 1163–1202. [Google Scholar] [CrossRef]
- Naik, M.K.; Panda, R.; Abraham, A. Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm. J. King Saud Univ. Comput. Inf. Sci. 2020, 34, 4524–4536. [Google Scholar] [CrossRef]
- Naik, M.K.; Panda, R.; Abraham, A. Adaptive opposition slime mould algorithm. Soft Comput. 2021, 25, 14297–14313. [Google Scholar] [CrossRef]
- Kundu, T.; Garg, H. LSMA-TLBO: A hybrid SMA-TLBO algorithm with lévy flight based mutation for numerical optimization and engineering design problems. Adv. Eng. Softw. 2022, 172, 103185. [Google Scholar] [CrossRef]
- Hermosilla, G.; Rojas, M.; Mendoza, J.; Farias, G.; Pizarro, F.T.; Martin, C.S.; Vera, E. Particle Swarm Optimization for the Fusion of Thermal and Visible Descriptors in Face Recognition Systems. IEEE Access 2018, 6, 42800–42811. [Google Scholar] [CrossRef]
- Khan, S.A.; Ishtiaq, M.; Nazir, M.; Shaheen, M. Face recognition under varying expressions and illumination using particle swarm optimization. J. Comput. Sci. 2018, 28, 94–100. [Google Scholar] [CrossRef]
- Subramanian, R.R.; Mohan, H.; Jenny, A.M.; Sreshta, D.; Prasanna, M.L.; Mohan, P. PSO Based Fuzzy-Genetic Optimization Technique for Face Recognition. In Proceedings of the 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 374–379. [Google Scholar]
- Ahmed, S.; Frikha, M.; Hussein, T.D.H.; Rahebi, J. Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning. BioMed Res. Int. 2021, 2021, 6621540. [Google Scholar] [CrossRef]
- Chalabi, N.E.; Attia, A.; Bouziane, A.; Akhtar, Z. Particle swarm optimization based block feature selection in face recognition system. Multimed. Tools Appl. 2021, 80, 33257–33273. [Google Scholar] [CrossRef]
- Annamalai, P. Automatic Face Recognition Using Enhanced Firefly Optimization Algorithm and Deep Belief Network. Int. J. Intell. Eng. Syst. 2020, 13, 19–28. [Google Scholar] [CrossRef]
- Ahmed, S.; Frikha, M.; Hussein, T.D.H.; Rahebi, J. Harris Hawks Optimization Method based on Convolutional Neural Network for Face Recognition Systems. In Proceedings of the International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 9–11 June 2022; pp. 1–6. [Google Scholar]
- Alsubai, S.; Hamdi, M.; Abdel-Khalek, S.; Alqahtani, A.; Binbusayyis, A.; Mansour, R.F. Bald eagle search optimization with deep transfer learning enabled age-invariant face recognition model. Image Vis. Comput. 2022, 126, 104545. [Google Scholar] [CrossRef]
- Ren, D.; Yang, J.; Wei, Z. Multi-Level Cycle-Consistent Adversarial Networks with Attention Mechanism for Face Sketch-Photo Synthesis. Sensors 2022, 22, 6725. [Google Scholar] [CrossRef] [PubMed]
- Rizkinia, M.; Faustine, N.; Okuda, M. Conditional Generative Adversarial Networks with Total Variation and Color Correction for Generating Indonesian Face Photo from Sketch. Appl. Sci. 2022, 12, 10006. [Google Scholar] [CrossRef]
- Zhong, K.; Chen, Z.; Liu, C.; Wu, Q.M.J.; Duan, S. Unsupervised self-attention lightweight photo-to-sketch synthesis with feature maps. J. Vis. Commun. Image Represent. 2023, 90, 103747. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, C.; Liu, D.; Wang, N.; Gao, X. Face photo-sketch synthesis via intra-domain enhancement. Knowl.-Based Syst. 2023, 259, 110026. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, C.; Xie, H.; Fukusato, T.; Miyata, K. DiffFaceSketch: High-Fidelity Face Image Synthesis with Sketch-Guided Latent Diffusion Model. arXiv 2023, arXiv:2302.06908. [Google Scholar]
- Singh, A.; Kushwaha, S.; Alarfaj, M.; Singh, M. Comprehensive Overview of Backpropagation Algorithm for Digital Image Denoising. Electronics 2022, 11, 1590. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Abualigah, L.; Eid, A. Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst. Appl. 2021, 182, 115205. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, D.; Yu, F.; Heidari, A.A.; Ru, J.; Chen, H.; Mafarja, M.; Turabieh, H.; Pan, Z. Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation. Comput. Biol. Med. 2021, 138, 104910. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Ahmadianfar, I.; Golilarz, N.A.; Jamei, M.; Heidari, A.A.; Kuang, F.; Zhang, S.; Chen, H. Adaptive slime mould algorithm for optimal design of photovoltaic models. Energy Sci. Eng. 2022, 10, 2035–2064. [Google Scholar] [CrossRef]
- Naik, M.K.; Panda, R.; Abraham, A. An entropy minimization based multilevel colour thresholding technique for analysis of breast thermograms using equilibrium slime mould algorithm. Appl. Soft Comput. 2021, 113, 107955. [Google Scholar] [CrossRef]
- Chauhan, S.; Vashishtha, G.; Kumar, A. A symbiosis of arithmetic optimizer with slime mould algorithm for improving global optimization and conventional design problem. J. Supercomput. 2022, 78, 6234–6274. [Google Scholar] [CrossRef]
- Altay, O. Chaotic slime mould optimization algorithm for global optimization. Artif. Intell. Rev. 2022, 55, 3979–4040. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Cui, Z.; Hou, X.; Zhou, H.; Lian, W.; Wu, J. Modified Slime Mould Algorithm via Levy Flight. In Proceedings of the 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2020), Chengdu, China, 17–19 October 2020; pp. 1109–1113. [Google Scholar]
- Deepa, R.; Venkataraman, R. Enhancing Whale Optimization Algorithm with Levy Flight for coverage optimization in wireless sensor networks. Comput. Electr. Eng. 2021, 94, 107359. [Google Scholar] [CrossRef]
- Iacca, G.; dos Santos Junior, V.C.; Veloso de Melo, V. An improved Jaya optimization algorithm with Lévy flight. Expert Syst. Appl. 2021, 165, 113902. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Ke, T.; Li, X.; Omidvar, M.N.; Yang, Z.; Thomas, W. Benchmark Functions for the CEC’2013 Special Session and Competition on Large-Scale Global Optimization; University of Science and Technology of China: Hefei, China, 2010; pp. 1–21. [Google Scholar]
- Messer, K.; Matas, J.; Kittler, J.; Luettin, J.; Maitre, G. XM2VTSDB: The extended M2VTS database. In Proceedings of the 2nd International Conference on Audio and Video-Based Biometric Person Authentication, Washington, DC, USA, 22–24 March 1999; Volume 964, pp. 965–966. [Google Scholar]
- Zhang, W.; Wang, X.; Tang, X. Coupled information-theoretic encoding for face photo-sketch recognition. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 513–520. [Google Scholar]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064. [Google Scholar] [CrossRef]
- Li, P.; Sheng, B.; Chen, C.L.P. Face Sketch Synthesis Using Regularized Broad Learning System. In IEEE Transactions on Neural Networks and Learning Systems; IEEE: New York, NY, USA, 2021; pp. 5346–5360. [Google Scholar]
- Wang, N.; Gao, X.; Sun, L.; Li, J. Bayesian Face Sketch Synthesis. IEEE Trans. Image Process. 2017, 26, 1264–1274. [Google Scholar] [CrossRef] [PubMed]
- Galoogahi, H.K.; Sim, T. Inter-modality face sketch recognition. In Proceedings of the International Conference on Multimedia and Expo, Melbourne, VIC, Australia, 9–13 July 2012; pp. 224–229. [Google Scholar]
- Lenc, L.; Král, P. Automatic face recognition system based on the SIFT features. Comput. Electr. Eng. 2015, 46, 256–272. [Google Scholar] [CrossRef]
- Ding, C.; Choi, J.; Tao, D.; Davis, L.S. Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 518–531. [Google Scholar] [CrossRef] [PubMed]
Type | Function | Description | Dim | ||
---|---|---|---|---|---|
Separable functions | Shifted Elliptic Function | 1000 | [−100, 100] | 0 | |
Shifted Rastrigin’s Function | 1000 | [−5, 5] | 0 | ||
Shifted Ackley’s Function | 1000 | [−32, 32] | 0 | ||
Single-group m–non-separable functions | Single-group Shifted and m-rotated Elliptic Function | 1000 | [−100, 100] | 0 | |
Single-group Shifted and m-rotated Rastrigin’s Function | 1000 | [−5, 5] | 0 | ||
Single-group Shifted and m-rotated Ackley’s Function | 1000 | [−32, 32] | 0 | ||
Single-group Shifted m-dimensional Schwefel’s | 1000 | [−100, 100] | 0 | ||
Single-group Shifted m-dimensional Rosenbrock’s Function | 1000 | [−100, 100] | 0 | ||
group m–non-separable functions | group Shifted and m-rotated Elliptic Function | 1000 | [−100, 100] | 0 | |
group Shifted and m-rotated Rastrigin’s Function | 1000 | [−5, 5] | 0 | ||
group Shifted and m-rotated Ackley’s Function | 1000 | [−32, 32] | 0 | ||
group Shifted m-rotated Schwefel’s | 1000 | [−100, 100] | 0 | ||
group Shifted m-rotated Rosenbrock’s Function | 1000 | [−100, 100] | 0 | ||
group m–non-separable functions | group Shifted and m-rotated Elliptic Function | 1000 | [−100, 100] | 0 | |
group Shifted and m-rotated Rastrigin’s Function | 1000 | [−5, 5] | 0 | ||
group Shifted and m-rotated Ackley’s Function | 1000 | [−32, 32] | 0 | ||
group Shifted m-rotated Schwefel | 1000 | [−100, 100] | 0 | ||
group Shifted m-rotated Rosenbrock’s Function | 1000 | [−100, 100] | 0 | ||
Fully separable functions | Shifted Schwefel’s | 1000 | [−100, 100] | 0 | |
Shifted Rosenbrock’s Function | 1000 | [−100, 100] | 0 |
Function | Algorithm | |||
---|---|---|---|---|
Proposed_30 | Proposed_10 | Proposed_30 | Proposed_10 | |
Mean | Mean | Std. | Std. | |
F1 | 8.8 × 109 | 2.26 × 1010 | 6.57 × 108 | 1.58 × 109 |
F2 | 12,129.97 | 13,175.47 | 198.788 | 219.3744 |
F3 | 20.97428 | 20.98415 | 0.014797 | 0.016608 |
F4 | 3.82 × 1013 | 6.92 × 1013 | 1.32 × 1013 | 1.93 × 1013 |
F5 | 2.71 × 108 | 3.45 × 108 | 55,552,821 | 91,773,918 |
F6 | 5,113,851 | 11,026,896 | 4,929,368 | 6,083,478 |
F7 | 5.69 × 109 | 2.32 × 1010 | 1.51 × 109 | 4.59 × 109 |
F8 | 1.37 × 109 | 1.04 × 1010 | 2.59 × 109 | 1.18 × 1010 |
F9 | 1.14 × 1010 | 2.47 × 1010 | 5.67 × 108 | 1.99 × 109 |
F10 | 12,130.43 | 13,041.73 | 178.6562 | 185.0105 |
F11 | 227.1399 | 228.2753 | 0.659421 | 0.635519 |
F12 | 3,809,917 | 4,223,945 | 189,280.9 | 230,020.6 |
F13 | 3.76 × 109 | 5.52 × 1010 | 6.97 × 108 | 8.12 × 109 |
F14 | 1.28 × 1010 | 2.6 × 1010 | 1.25 × 109 | 2.09 × 109 |
F15 | 12,230.97 | 13,068.63 | 189.9647 | 222.8522 |
F16 | 412.4328 | 414.7671 | 0.712702 | 0.882251 |
F17 | 4,775,455 | 5,446,786 | 316,617.3 | 457,231.5 |
F18 | 1.25 × 1011 | 4.27 × 1011 | 1.46 × 1010 | 2.98 × 1010 |
F19 | 13,908,503 | 19,032,212 | 1,323,228 | 1,332,130 |
F20 | 1.52 × 1011 | 5.05 × 1011 | 1.26 × 1010 | 3.31 × 1010 |
Algorithm | Population | Maximum No. of Iterations | Parameter Settings |
---|---|---|---|
S2SMA (proposed) | 30 | = 0.03, = 5, = 0.5, and = 3/2 | |
SMA [28] | 30 | = 0.03 | |
ESMA [56] | 30 | = 0.03 | |
LSMA [36] | 30 | = 0.03 | |
AOSMA [37] | 30 | = 0.03 | |
AOA [59] | 30 | = 5 and = 0.5 |
Function | Fitness | Algorithm | |||||
---|---|---|---|---|---|---|---|
S2SMA (Proposed) | SMA | ESMA | LSMA | AOSMA | AOA | ||
F1 | Best | 1.76 × 109 | 7.81 × 109 | 5.14 × 109 | 1.11 × 1010 | 1.57 × 1010 | 1.77 × 1011 |
Median | 2.06 × 109 | 9.14 × 109 | 6.03 × 109 | 1.4 × 1010 | 1.88 × 1010 | 1.88 × 1011 | |
Worst | 2.61 × 109 | 1.05 × 1010 | 6.89 × 109 | 1.54 × 1010 | 2.27 × 1010 | 1.98 × 1011 | |
Mean | 2.07 × 109 | 9.17 × 109 | 5.95 × 109 | 1.37 × 1010 | 1.87 × 1010 | 1.88 × 1011 | |
Std | 1.98 × 108 | 7.18 × 108 | 4.63 × 108 | 1 × 109 | 1.85 × 109 | 4.99 × 109 | |
F2 | Best | 7420.003 | 11,622.23 | 11,122.65 | 11,563.58 | 12,220.17 | 16,814.9 |
Median | 7913.024 | 12,123.91 | 11,553.64 | 12,078.19 | 12,808.79 | 16,879.47 | |
Worst | 8543.541 | 12,562.58 | 11,909.94 | 12,525.94 | 13,488.04 | 16,928.68 | |
Mean | 7914.655 | 12,094.01 | 11,540.2 | 12,044.08 | 12,862.12 | 16,880.43 | |
Std | 223.0079 | 233.6023 | 177.2629 | 227.6748 | 289.5164 | 25.38681 | |
F3 | Best | 20.45723 | 20.94333 | 20.94137 | 20.82354 | 20.74332 | 20.96937 |
Median | 20.53913 | 20.97172 | 20.97353 | 20.87073 | 20.88426 | 20.97909 | |
Worst | 20.62014 | 20.99172 | 20.99089 | 20.90363 | 20.94046 | 20.98651 | |
Mean | 20.5377 | 20.97023 | 20.97294 | 20.8696 | 20.87993 | 20.97899 | |
Std | 0.034483 | 0.011155 | 0.010779 | 0.019869 | 0.045559 | 0.004683 | |
F4 | Best | 1.98 × 1013 | 2.3 × 1013 | 1.96 × 1013 | 1.62 × 1013 | 2.63 × 1013 | 6.05 × 1014 |
Median | 4.46 × 1013 | 4.24 × 1013 | 3.76 × 1013 | 3.83 × 1013 | 5.7 × 1013 | 1.72 × 1015 | |
Worst | 7.16 × 1013 | 6.28 × 1013 | 5.32 × 1013 | 6.36 × 1013 | 1 × 1014 | 3.26 × 1015 | |
Mean | 4.38 × 1013 | 4.2 × 1013 | 3.76 × 1013 | 3.92 × 1013 | 5.67 × 1013 | 1.81 × 1015 | |
Std | 1.39 × 1013 | 1.1 × 1013 | 8.79 × 1012 | 1.09 × 1013 | 1.97 × 1013 | 6.56 × 1014 | |
F5 | Best | 3.87 × 108 | 1.45 × 108 | 1.35 × 108 | 1.3 × 108 | 2.32 × 108 | 6.56 × 108 |
Median | 4.63 × 108 | 2.68 × 108 | 2.39 × 108 | 2.35 × 108 | 3.53 × 108 | 7.37 × 108 | |
Worst | 6.57 × 108 | 4.66 × 108 | 4.53 × 108 | 4.66 × 108 | 4.67 × 108 | 8.18 × 108 | |
Mean | 4.93 × 108 | 2.75 × 108 | 2.59 × 108 | 2.47 × 108 | 3.53 × 108 | 7.31 × 108 | |
Std | 78,930,465 | 70,779,121 | 72,072,794 | 76,161,679 | 66,866,994 | 42,197,174 | |
F6 | Best | 19,092,882 | 2,667,085 | 2,211,587 | 3,267,670 | 7,694,194 | 19,871,195 |
Median | 19,283,502 | 3,444,805 | 3,135,796 | 4,676,409 | 17,075,574 | 20,205,266 | |
Worst | 19,623,059 | 19,549,466 | 19,242,111 | 8,729,924 | 19,638,217 | 20,456,178 | |
Mean | 19,303,738 | 4,156,635 | 3,825,783 | 4,731,126 | 16,199,990 | 20,209,715 | |
Std | 126,238.1 | 2,994,700 | 2,983,575 | 1,109,918 | 3,183,234 | 137,216.6 | |
F7 | Best | 1.75 × 1010 | 2.33 × 109 | 2.18 × 109 | 5.69 × 109 | 1.25 × 1010 | 2.45 × 1011 |
Median | 2.96 × 1010 | 5.38 × 109 | 4.86 × 109 | 1.1 × 1010 | 2.44 × 1010 | 1.52 × 1012 | |
Worst | 4.51 × 1010 | 9.66 × 109 | 8.37 × 109 | 1.69 × 1010 | 3.44 × 1010 | 4.28 × 1012 | |
Mean | 2.91 × 1010 | 5.64 × 109 | 4.74 × 109 | 1.07 × 1010 | 2.41 × 1010 | 1.65 × 1012 | |
Std | 6.34 × 109 | 1.77 × 109 | 1.5 × 109 | 2.53 × 109 | 5.9 × 109 | 9.14 × 1011 | |
F8 | Best | 44,622,771 | 1.85 × 108 | 1.01 × 108 | 74,068,916 | 3.83 × 108 | 3.06 × 1016 |
Median | 1.87 × 108 | 3.65 × 108 | 4.48 × 108 | 7.17 × 108 | 1.69 × 109 | 4.83 × 1016 | |
Worst | 8.21 × 109 | 9.81 × 109 | 1.05 × 1010 | 1.04 × 1010 | 9.92 × 109 | 6.05 × 1016 | |
Mean | 8.02 × 108 | 1.92 × 109 | 2.08 × 109 | 2.37 × 109 | 2.85 × 109 | 4.88 × 1016 | |
Std | 1.61 × 109 | 2.92 × 109 | 3.12 × 109 | 3.17 × 109 | 2.79 × 109 | 7.63 × 1015 | |
F9 | Best | 4.07 × 109 | 9.71 × 109 | 7.34 × 109 | 1.37 × 1010 | 1.63 × 1010 | 2.1 × 1011 |
Median | 4.62 × 109 | 1.12 × 1010 | 8.6 × 109 | 1.6 × 1010 | 2.05 × 1010 | 2.22 × 1011 | |
Worst | 5.47 × 109 | 1.36 × 1010 | 9.8 × 109 | 1.86 × 1010 | 2.55 × 1010 | 2.35 × 1011 | |
Mean | 4.62 × 109 | 1.13 × 1010 | 8.62 × 109 | 1.6 × 1010 | 2.05 × 1010 | 2.23 × 1011 | |
Std | 2.81 × 108 | 8.49 × 108 | 6.85 × 108 | 1.01 × 109 | 2.17 × 109 | 7.27 × 109 | |
F10 | Best | 9874.878 | 11,724.88 | 11,405.84 | 11,488.99 | 11,704.62 | 16,819.37 |
Median | 10,182.29 | 12,223.82 | 11,845.07 | 11,925.26 | 12,586.2 | 17,079.4 | |
Worst | 10,664.76 | 12,635.02 | 12,259.19 | 12,260.33 | 13,429.73 | 17,306.07 | |
Mean | 10,201.98 | 12,226.61 | 11,853.7 | 11,917.62 | 12,551.05 | 17,081.76 | |
Std | 189.7485 | 226.7152 | 211.632 | 197.3043 | 422.7365 | 118.8733 | |
F11 | Best | 219.4078 | 225.7075 | 225.7055 | 223.557 | 222.9627 | 229.0635 |
Median | 221.713 | 228.3196 | 226.8211 | 225.1769 | 225.684 | 229.757 | |
Worst | 224.0152 | 229.8544 | 229.3891 | 226.6153 | 227.2091 | 230.1152 | |
Mean | 221.6478 | 228.1962 | 227.105 | 225.1461 | 225.4392 | 229.725 | |
Std | 1.239087 | 1.205704 | 0.982233 | 0.735506 | 1.106646 | 0.26831 | |
F12 | Best | 2,276,120 | 3,368,692 | 3,030,133 | 3,851,178 | 3,849,260 | 12,102,047 |
Median | 2,621,306 | 3,728,335 | 3,327,312 | 4,225,549 | 4,752,430 | 15,370,248 | |
Worst | 2,882,778 | 4,160,006 | 3,906,673 | 4,682,711 | 5,508,701 | 21,048,071 | |
Mean | 2,620,532 | 3,730,252 | 3,412,245 | 4,254,445 | 4,686,477 | 15,602,565 | |
Std | 130,216.5 | 175,431.2 | 238,544.8 | 206,243.5 | 404,333 | 2,239,131 | |
F13 | Best | 2.02 × 108 | 2.71 × 109 | 1 × 109 | 9.99 × 109 | 2.3 × 1010 | 6.7 × 1011 |
Median | 2.9 × 108 | 3.83 × 109 | 1.48 × 109 | 1.45 × 1010 | 3.08 × 1010 | 6.84 × 1011 | |
Worst | 5.68 × 108 | 5.67 × 109 | 1.94 × 109 | 1.79 × 1010 | 4.67 × 1010 | 6.96 × 1011 | |
Mean | 3.18 × 108 | 3.87 × 109 | 1.48 × 109 | 1.45 × 1010 | 3.14 × 1010 | 6.83 × 1011 | |
Std | 86,911,529 | 6.78 × 108 | 2.76 × 108 | 2.11 × 109 | 5.13 × 109 | 7.06 × 109 | |
F14 | Best | 5.74 × 109 | 1.12 × 1010 | 8.94 × 109 | 1.47 × 1010 | 1.85 × 1010 | 2.19 × 1011 |
Median | 7.16 × 109 | 1.28 × 1010 | 1.06 × 1010 | 1.63 × 1010 | 2.19 × 1010 | 2.45 × 1011 | |
Worst | 9.41 × 109 | 1.47 × 1010 | 1.22 × 1010 | 1.94 × 1010 | 2.37 × 1010 | 2.6 × 1011 | |
Mean | 7.26 × 109 | 1.28 × 1010 | 1.06 × 1010 | 1.63 × 1010 | 2.14 × 1010 | 2.45 × 1011 | |
Std | 8.9 × 108 | 9.49 × 108 | 9.58 × 108 | 1.04 × 109 | 1.54 × 109 | 9.83 × 109 | |
F15 | Best | 10,441.07 | 11,715.81 | 11,521.83 | 11,414.74 | 11,608.27 | 16,581.15 |
Median | 10,943.73 | 12,247.13 | 11,915.48 | 11,756.24 | 12,400.18 | 16,868.84 | |
Worst | 11,704.28 | 12,656.63 | 12,463.85 | 12,280.87 | 12,949.81 | 17,125.66 | |
Mean | 10,960.73 | 12,246.81 | 11,898.22 | 11,767.4 | 12,358.15 | 16,884.21 | |
Std | 254.8337 | 262.1877 | 233.1186 | 215.1636 | 381.2675 | 137.7109 | |
F16 | Best | 404.6271 | 410.8071 | 411.5858 | 408.5032 | 409.4019 | 417.1974 |
Median | 408.1271 | 413.8228 | 413.8984 | 409.986 | 413.1222 | 417.7382 | |
Worst | 410.3292 | 416.0813 | 415.0011 | 413.5427 | 414.788 | 418.3869 | |
Mean | 407.8513 | 413.7724 | 413.679 | 410.2303 | 412.7576 | 417.7455 | |
Std | 1.285974 | 1.20194 | 0.926444 | 1.286516 | 1.445627 | 0.267426 | |
F17 | Best | 2,466,681 | 3,951,118 | 3,821,661 | 4,715,783 | 4,548,857 | 33,001,378 |
Median | 3,731,849 | 4,476,318 | 4,312,100 | 5,214,502 | 5,499,177 | 43,564,464 | |
Worst | 4,662,725 | 5,232,786 | 4,966,740 | 5,797,767 | 6,587,557 | 51,734,401 | |
Mean | 3,533,019 | 4,512,265 | 4,311,666 | 5,217,711 | 5,541,469 | 43,619,099 | |
Std | 541,249.5 | 291,273.4 | 276,255 | 290,986.3 | 545,820.7 | 5,020,599 | |
F18 | Best | 2.95 × 1010 | 9.7 × 1010 | 5.49 × 1010 | 1.69 × 1011 | 2.63 × 1011 | 1.44 × 1012 |
Median | 3.62 × 1010 | 1.17 × 1011 | 7.61 × 1010 | 2.05 × 1011 | 3.07 × 1011 | 1.46 × 1012 | |
Worst | 4.19 × 1010 | 1.4 × 1011 | 8.61 × 1010 | 2.43 × 1011 | 3.52 × 1011 | 1.47 × 1012 | |
Mean | 3.63 × 1010 | 1.17 × 1011 | 7.5 × 1010 | 2.07 × 1011 | 3.07 × 1011 | 1.46 × 1012 | |
Std | 3.28 × 109 | 1.09 × 1010 | 7.55 × 109 | 1.83 × 1010 | 2.33 × 1010 | 6.02 × 109 | |
F19 | Best | 9,885,192 | 11,537,452 | 11,829,648 | 11,496,363 | 13,366,719 | 45,969,764 |
Median | 11,948,149 | 13,796,444 | 13,120,993 | 15,140,891 | 19,832,030 | 75,940,439 | |
Worst | 16,032,746 | 16,494,867 | 17,101,180 | 17,142,757 | 24,729,783 | 1.15 × 108 | |
Mean | 12,263,206 | 13,961,159 | 13,262,631 | 14,884,574 | 19,471,422 | 75,902,843 | |
Std | 1,588,291 | 1,332,594 | 1,048,934 | 1,322,939 | 2,358,851 | 18,375,810 | |
F20 | Best | 3.69 × 1010 | 1.2 × 1011 | 7.77 × 1010 | 2.29 × 1011 | 3.29 × 1011 | 1.62 × 1012 |
Median | 4.58 × 1010 | 1.47 × 1011 | 9.26 × 1010 | 2.59 × 1011 | 3.8 × 1011 | 1.64 × 1012 | |
Worst | 6.45 × 1010 | 1.84 × 1011 | 1.08 × 1011 | 2.95 × 1011 | 4.3 × 1011 | 1.65 × 1012 | |
Mean | 4.76 × 1010 | 1.48 × 1011 | 9.31 × 1010 | 2.62 × 1011 | 3.81 × 1011 | 1.64 × 1012 | |
Std | 6.68 × 109 | 1.42 × 1010 | 8.43 × 109 | 1.61 × 1010 | 2.59 × 1010 | 7.39 × 109 |
Function No. | SMA | ESMA | LSMA | AOSMA | AOA |
---|---|---|---|---|---|
1 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
2 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
3 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
4 | 0.630876 | 0.082357 | 0.17145 | 0.011711 | 3.02 × 10−11 |
5 | 1 | 1 | 1 | 1 | 1 |
6 | 1 | 1 | 1 | 0.999999 | 1 |
7 | 1 | 1 | 1 | 0.992383 | 1 |
8 | 0.001857 | 0.009883 | 0.000377 | 2.88 × 10−6 | 3.02 × 10−11 |
9 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
10 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
12 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
13 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
14 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
15 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
16 | 3.02 × 10−11 | 3.02 × 10−11 | 1.85 × 10−08 | 3.02 × 10−11 | 3.02 × 10−11 |
17 | 3.82 × 10−10 | 7.77 × 10−09 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
18 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
19 | 9.79 × 10−5 | 0.005084 | 3.26 × 10−7 | 3.02 × 10−11 | 3.02 × 10−11 |
20 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
Item | Component | Setting |
---|---|---|
Hardware | CPU | Intel(R) Core (TM) i7-10700 |
Frequency | 2.9 GHz | |
RAM | 16GB | |
GPU | Nvidia GeForce GTX 1660 Super | |
SSD | 256 GB | |
Hard Drive | 2 TB | |
Software | Operating System | Windows 10 |
Language | MATLAB R2021a |
SMA | S2SMA (Proposed) | |
Time (second) | 13.51 | 12.54 |
Database | Number of Sketch–Photo Pairs | Training Pairs | Testing Pairs |
---|---|---|---|
XM2VTS | 295 | 100 | 195 |
CUFSF | 1194 | 955 | 239 |
Deep-Face Model | Algorithm | Accuracy (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8 | Rank 9 | Rank 10 | ||
Facenet | S2SMA (proposed) | 85.28 | 91.28 | 94.56 | 96.15 | 97.08 | 97.49 | 98.21 | 98.72 | 98.92 | 99.13 |
SMA [28] | 83.79 | 91.13 | 94.26 | 95.85 | 96.82 | 97.69 | 97.95 | 98.26 | 98.46 | 98.67 | |
ESMA [56] | 84.67 | 90.67 | 94.00 | 95.74 | 96.92 | 97.38 | 97.95 | 98.15 | 98.36 | 98.46 | |
LSMA [36] | 84.46 | 91.08 | 94.82 | 96.36 | 97.38 | 98.00 | 98.46 | 98.82 | 99.03 | 99.23 | |
AOSMA [37] | 83.79 | 90.77 | 94.26 | 95.79 | 96.87 | 97.49 | 97.85 | 98.10 | 98.51 | 98.77 | |
AOA [59] | 83.38 | 91.33 | 94.00 | 95.49 | 96.56 | 97.18 | 97.44 | 97.95 | 98.10 | 98.56 | |
Non-optimized | 84.62 | 90.77 | 93.85 | 95.90 | 96.92 | 97.95 | 98.46 | 98.46 | 98.46 | 98.46 | |
ArcFace | S2SMA (proposed) | 85.28 | 93.13 | 97.03 | 97.95 | 98.67 | 99.13 | 99.33 | 99.49 | 99.49 | 99.59 |
SMA | 84.72 | 93.18 | 96.36 | 96.92 | 98.00 | 98.36 | 98.67 | 98.87 | 99.28 | 99.38 | |
ESMA | 84.87 | 93.18 | 96.51 | 97.28 | 98.10 | 98.51 | 98.82 | 99.03 | 99.33 | 99.44 | |
LSMA | 84.36 | 92.31 | 96.26 | 97.54 | 98.26 | 98.46 | 99.03 | 99.13 | 99.18 | 99.23 | |
AOSMA | 84.15 | 92.10 | 96.05 | 97.54 | 97.95 | 98.51 | 99.03 | 99.18 | 99.18 | 99.44 | |
AOA | 83.28 | 92.92 | 95.74 | 97.33 | 98.10 | 98.67 | 98.82 | 98.97 | 99.13 | 99.18 | |
Non-optimized | 84.10 | 93.33 | 97.44 | 97.44 | 98.46 | 98.46 | 98.46 | 98.97 | 99.49 | 99.49 | |
VGG-Face | S2SMA (proposed) | 72.82 | 84.51 | 90.26 | 92.51 | 94.26 | 94.72 | 95.33 | 96.92 | 97.49 | 97.95 |
SMA | 71.44 | 82.77 | 89.03 | 91.38 | 93.49 | 94.26 | 94.97 | 96.05 | 96.87 | 97.74 | |
ESMA | 71.79 | 82.87 | 88.82 | 91.69 | 93.54 | 94.26 | 94.82 | 95.95 | 96.92 | 97.79 | |
LSMA | 71.59 | 82.97 | 88.41 | 91.38 | 93.38 | 94.15 | 94.87 | 96.15 | 96.77 | 97.74 | |
AOSMA | 71.28 | 83.44 | 88.92 | 91.49 | 93.28 | 94.31 | 94.92 | 96.21 | 97.03 | 97.90 | |
AOA | 72.10 | 83.59 | 89.28 | 91.90 | 93.59 | 94.26 | 95.08 | 96.36 | 97.08 | 97.74 | |
Non-optimized | 71.28 | 82.05 | 89.74 | 91.28 | 93.33 | 93.85 | 94.36 | 96.41 | 96.92 | 97.95 | |
DeepFace | S2SMA (proposed) | 41.85 | 54.36 | 59.38 | 64.41 | 68.62 | 71.85 | 74.87 | 76.51 | 77.85 | 79.03 |
SMA | 40.62 | 52.26 | 57.18 | 62.51 | 67.08 | 71.08 | 74.05 | 76.05 | 77.38 | 78.36 | |
ESMA | 41.13 | 52.31 | 56.92 | 61.44 | 66.77 | 70.72 | 73.18 | 75.54 | 77.18 | 78.36 | |
LSMA | 40.92 | 52.41 | 57.33 | 62.56 | 67.38 | 71.13 | 73.79 | 76.15 | 77.64 | 78.87 | |
AOSMA | 41.13 | 52.05 | 57.44 | 63.08 | 67.49 | 70.46 | 73.85 | 75.69 | 77.18 | 78.36 | |
AOA | 41.28 | 52.77 | 58.67 | 63.74 | 67.49 | 70.67 | 73.38 | 75.79 | 77.49 | 78.77 | |
Non-optimized | 41.03 | 51.79 | 56.92 | 62.05 | 67.18 | 70.77 | 75.38 | 76.92 | 78.97 | 79.49 | |
Multiple-model | S2SMA (proposed) | 98.92 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
SMA | 97.85 | 99.85 | 99.95 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
ESMA | 97.74 | 99.79 | 99.90 | 99.95 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
LSMA | 98.41 | 99.85 | 99.95 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
AOSMA | 98.62 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
AOA | 97.85 | 99.85 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
Non-optimized | 97.95 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Deep-Face Model | Fitness | Algorithm | |||||
---|---|---|---|---|---|---|---|
S2SMA (Proposed) | SMA | ESMA | LSMA | AOSMA | AOA | ||
FaceNet | Best | −9.53 × 10−2 | −5.94 × 10−2 | −5.91 × 10−2 | −8.28 × 10−2 | −8.17 × 10−2 | −7.02 × 10−2 |
Median | −9.42 × 10−2 | −5.72 × 10−2 | −5.79 × 10−2 | −7.95 × 10−2 | −7.92 × 10−2 | −6.51 × 10−2 | |
Worst | −9.16 × 10−2 | −5.61 × 10−2 | −5.59 × 10−2 | −7.63 × 10−2 | −7.77 × 10−2 | −6.37 × 10−2 | |
Mean | −9.41 × 10−2 | −5.74 × 10−2 | −5.77 × 10−2 | −7.92 × 10−2 | −7.95 × 10−2 | −6.61 × 10−2 | |
Std | 1.04 × 10−3 | 1.03 × 10−3 | 1.16 × 10−3 | 2.24 × 10−3 | 1.25 × 10−3 | 2.23 × 10−3 | |
ArcFace | Best | −7.95 × 10−2 | −5.16 × 10−2 | −5.27 × 10−2 | −5.92 × 10−2 | −6.08 × 10−2 | −5.62 × 10−2 |
Median | −7.79 × 10−2 | −5.09 × 10−2 | −5.14 × 10−2 | −5.60 × 10−2 | −5.77 × 10−2 | −5.38 × 10−2 | |
Worst | −7.69 × 10−2 | −5.05 × 10−2 | −5.10 × 10−2 | −5.34 × 10−2 | −5.58 × 10−2 | −5.23 × 10−2 | |
Mean | −7.80 × 10−2 | −5.10 × 10−2 | −5.17 × 10−2 | −5.60 × 10−2 | −5.78 × 10−2 | −5.41 × 10−2 | |
Std | 8.60 × 10−4 | 4.02 × 10−4 | 6.74 × 10−4 | 2.04 × 10−3 | 1.56 × 10−3 | 1.14 × 10−3 | |
VGG-Face | Best | −2.57 × 10−2 | −1.65 × 10−2 | −1.64 × 10−2 | −1.72 × 10−2 | −1.75 × 10−2 | −1.73 × 10−2 |
Median | −2.54 × 10−2 | −1.60 × 10−2 | −1.61 × 10−2 | −1.67 × 10−2 | −1.69 × 10−2 | −1.70 × 10−2 | |
Worst | −2.51 × 10−2 | −1.58 × 10−2 | −1.59 × 10−2 | −1.62 × 10−2 | −1.65 × 10−2 | −1.67 × 10−2 | |
Mean | −2.54 × 10−2 | −1.61 × 10−2 | −1.61 × 10−2 | −1.67 × 10−2 | −1.69 × 10−2 | −1.70 × 10−2 | |
Std | 2.25 × 10−4 | 2.29 × 10−4 | 1.88 × 10−4 | 2.86 × 10−4 | 3.34 × 10−4 | 2.05 × 10−4 | |
DeepFace | Best | −1.34 × 10−2 | −6.82 × 10−3 | −6.84 × 10−3 | −7.65 × 10−3 | −7.69 × 10−3 | −7.93 × 10−3 |
Median | −1.31 × 10−2 | −6.46 × 10−3 | −6.54 × 10−3 | −7.01 × 10−3 | −7.20 × 10−3 | −7.46 × 10−3 | |
Worst | −1.28 × 10−2 | −6.21 × 10−3 | −6.30 × 10−3 | −6.50 × 10−3 | −6.79 × 10−3 | −7.33 × 10−3 | |
Mean | −1.31 × 10−2 | −6.47 × 10−3 | −6.54 × 10−3 | −7.01 × 10−3 | −7.19 × 10−3 | −7.53 × 10−3 | |
Std | 1.63 × 10−4 | 1.72 × 10−4 | 1.67 × 10−4 | 4.01 × 10−4 | 3.10 × 10−4 | 1.77 × 10−4 | |
Multiple-model | Best | −2.37 × 10−1 | −1.85 × 10−1 | −1.84 × 10−1 | −2.20 × 10−1 | −2.26 × 10−1 | −1.87 × 10−1 |
Median | −2.33 × 10−1 | −1.78 × 10−1 | −1.75 × 10−1 | −2.14 × 10−1 | −2.17 × 10−1 | −1.86 × 10−1 | |
Worst | −2.31 × 10−1 | −1.76 × 10−1 | −1.74 × 10−1 | −2.06 × 10−1 | −2.12 × 10−1 | −1.82 × 10−1 | |
Mean | −2.34 × 10−1 | −1.79 × 10−1 | −1.77 × 10−1 | −2.14 × 10−1 | −2.18 × 10−1 | −1.85 × 10−1 | |
Std | 1.86 × 10−3 | 3.02 × 10−3 | 3.44 × 10−3 | 4.89 × 10−3 | 3.93 × 10−3 | 1.68 × 10−3 |
Algorithm | FaceNet | ArcFace | VGG-Face | DeepFace | Multiple-Model |
---|---|---|---|---|---|
SMA | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 |
ESMA | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 |
LSMA | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 |
AOSMA | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 |
AOA | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 | 1.83 × 10-4 |
Algorithm | Accuracy (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8 | Rank 9 | Rank 10 | |
S2SMA (Proposed) | 75.82 | 84.10 | 86.40 | 88.08 | 88.79 | 89.29 | 89.54 | 89.79 | 90.04 | 90.50 |
SMA | 74.52 | 83.77 | 86.07 | 87.74 | 88.49 | 88.91 | 89.12 | 89.83 | 89.92 | 90.08 |
ESMA | 74.35 | 83.85 | 86.15 | 87.91 | 88.62 | 89.00 | 89.21 | 90.00 | 90.04 | 90.13 |
LSMA | 75.31 | 84.35 | 86.40 | 87.78 | 88.58 | 88.95 | 89.33 | 89.83 | 90.13 | 90.54 |
AOSMA | 75.27 | 83.97 | 86.07 | 87.53 | 88.37 | 89.21 | 89.46 | 89.87 | 90.29 | 90.63 |
AOA | 75.31 | 83.51 | 85.61 | 87.32 | 88.37 | 89.00 | 89.50 | 89.75 | 90.04 | 90.50 |
non-optimized | 74.90 | 84.94 | 86.61 | 88.28 | 88.70 | 89.12 | 89.12 | 89.96 | 89.96 | 89.96 |
Fitness | Algorithm | |||||
---|---|---|---|---|---|---|
S2SMA (Proposed) | SMA | ESMA | LSMA | AOSMA | AOA | |
Best | −1.98 × 10−1 | −1.60 × 10−1 | −1.59 × 10−1 | −1.83 × 10−1 | −1.85 × 10−1 | −1.66 × 10−1 |
Median | −1.94 × 10−1 | −1.55 × 10−1 | −1.54 × 10−1 | −1.78 × 10−1 | −1.82 × 10−1 | −1.61 × 10−1 |
Worst | −1.89 × 10−1 | −1.54 × 10−1 | −1.54 × 10−1 | −1.75 × 10−1 | −1.75 × 10−1 | −1.59 × 10−1 |
Mean | −1.94 × 10−1 | −1.56 × 10−1 | −1.55 × 10−1 | −1.79 × 10−1 | −1.81 × 10−1 | −1.62 × 10−1 |
Std | 2.65 × 10−3 | 1.92 × 10−3 | 1.42 × 10−3 | 2.86 × 10−3 | 3.24 × 10−3 | 2.14 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhashash, K.M.; Samma, H.; Suandi, S.A. Fine-Tuning of Pre-Trained Deep Face Sketch Models Using Smart Switching Slime Mold Algorithm. Appl. Sci. 2023, 13, 5102. https://doi.org/10.3390/app13085102
Alhashash KM, Samma H, Suandi SA. Fine-Tuning of Pre-Trained Deep Face Sketch Models Using Smart Switching Slime Mold Algorithm. Applied Sciences. 2023; 13(8):5102. https://doi.org/10.3390/app13085102
Chicago/Turabian StyleAlhashash, Khaled Mohammad, Hussein Samma, and Shahrel Azmin Suandi. 2023. "Fine-Tuning of Pre-Trained Deep Face Sketch Models Using Smart Switching Slime Mold Algorithm" Applied Sciences 13, no. 8: 5102. https://doi.org/10.3390/app13085102
APA StyleAlhashash, K. M., Samma, H., & Suandi, S. A. (2023). Fine-Tuning of Pre-Trained Deep Face Sketch Models Using Smart Switching Slime Mold Algorithm. Applied Sciences, 13(8), 5102. https://doi.org/10.3390/app13085102