Diet Therapy of Obstructive Sleep Apnea Syndrome Treated with Positive Airway Pressure: A Systematic Review of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Registeration of the Systematic Review
2.2. Elecrtronic Search Strategy and Eligibility Assessment
- –
- Study conducted in adult participants;
- –
- Study conducted in a population of patients with obstructive sleep apnea diagnosed;
- –
- Study conducted in patients treated with PAP;
- –
- Study of any kind of dietary intervention;
- –
- Effect of dietary intervention compared with the effect observed for control group with no dietary intervention or with any other kind of dietary intervention;
- –
- Obstructive sleep apnea monitored using any objective or subjective method of assessment;
- –
- Study presenting results of RCT.
- –
- Study conducted in population of pregnant or lactating women;
- –
- Study conducted in population with any concurrent disease diagnosed, other than excessive body mass (overweight/obesity);
- –
- Study conducted in population with any mental health problems, eating disorders, or intellectual disabilities;
- –
- Study conducted in animal model.
2.3. Data Extracion and Risk of Bias Assessment
- –
- General characteristics of the study and studied population, including: country; detailed location of the study; general description of the studied population; period of the study; number of participants (males and females); age; and inclusion and exclusion criteria for the study;
- –
- Intervention applied, including: studied groups; description of dietary interventions; duration of intervention; and monitored variables;
- –
- Results and conclusions of the study.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slowik, J.M.; Sankari, A.; Collen, J.F. Obstructive Sleep Apnea. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459252/?report=classic (accessed on 9 March 2023).
- Punjabi, N.M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008, 15, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M.; Carter, S.G.; Carberry, J.C.; Eckert, D.J. Obstructive sleep apnea: Current perspectives. Nat. Sci. Sleep 2018, 23, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Coman, A.C.; Borzan, C.; Vesa, C.S.; Todea, D.A. Obstructive sleep apnea syndrome and the quality of life. Clujul. Med. 2016, 89, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Pavwoski, P.; Shelgikar, A.V. Treatment options for obstructive sleep apnea. Neurol. Clin. Pract. 2017, 7, 77–85. [Google Scholar] [CrossRef]
- Labarca, G.; Schmidt, A.; Dreyse, J.; Jorquera, J.; Enos, D.; Torres, G.; Barbe, F. Efficacy of continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA) and resistant hypertension (RH): Systematic review and meta-analysis. Sleep Med. Rev. 2021, 58, 101446. [Google Scholar] [CrossRef]
- Khan, S.U.; Duran, C.A.; Rahman, H.; Lekkala, M.; Saleem, M.A.; Kaluski, E. A meta-analysis of continuous positive airway pressure therapy in prevention of cardiovascular events in patients with obstructive sleep apnoea. Eur. Heart J. 2018, 21, 2291–2297. [Google Scholar] [CrossRef] [PubMed]
- Derose, S.F.; Zhou, H.; Huang, B.Z.; Manthena, P.; Hwang, D.; Shi, J.M. Does Providing Positive Airway Pressure for Sleep Apnea Change Health Care Utilization? Med. Care 2018, 56, 901–907. [Google Scholar] [CrossRef]
- Truong, K.K.; De Jardin, R.; Massoudi, N.; Hashemzadeh, M.; Jafari, B. Nonadherence to CPAP Associated With Increased 30-Day Hospital Readmissions. J. Clin. Sleep Med. 2018, 15, 183–189. [Google Scholar] [CrossRef]
- Walter, R.J.; Hagedorn, S.I.; Lettieri, C.J. Impact of diagnosing and treating obstructive sleep apnea on healthcare utilization. Sleep Med. 2017, 38, 73–77. [Google Scholar] [CrossRef]
- Drager, L.F.; Malhotra, A.; Yan, Y.; Pépin, J.L.; Armitstead, J.P.; Woehrle, H.; Nunez, C.M.; Cistulli, P.A.; Benjafield, A.V.; medXcloud group. Adherence with positive airway pressure therapy for obstructive sleep apnea in developing vs. developed countries: A big data study. J. Clin. Sleep Med. 2021, 1, 703–709. [Google Scholar] [CrossRef]
- Kim, J.H.; Kwon, M.S.; Song, H.M.; Lee, B.J.; Jang, Y.J.; Chung, Y.S. Compliance with positive airway pressure treatment for obstructive sleep apnea. Clin. Exp. Otorhinolaryngol. 2009, 2, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, L.; Phillips, D.; Khazaie, H. Barriers to acceptance and adherence to continuous positive airway pressure therapy in patients with obstructive sleep apnea: A report from Kermanshah province, western Iran. Patient Prefer. Adherence 2018, 20, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.A.; Purcell, N.; Sarmiento, K.F.; Neylan, T.C.; Maguen, S. Barriers to positive airway pressure adherence among veterans with sleep apnea: A mixed methods study. Transl. Behav. Med. 2022, 17, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Iannella, G.; Lechien, J.R.; Perrone, T.; Meccariello, G.; Cammaroto, G.; Cannavicci, A.; Burgio, L.; Maniaci, A.; Cocuzza, S.; Di Luca, M.; et al. Barbed reposition pharyngoplasty (BRP) in obstructive sleep apnea treatment: State of the art. Am. J. Otolaryngol. 2022, 43, 103197. [Google Scholar] [CrossRef]
- Jehan, S.; Zizi, F.; Pandi-Perumal, S.R.; Wall, S.; Auguste, E.; Myers, A.K.; Jean-Louis, G.; McFarlane, S.I. Obstructive Sleep Apnea and Obesity: Implications for Public Health. Sleep Med. Disord. 2017, 1, 00019. [Google Scholar] [PubMed]
- Epstein, L.J.; Kristo, D.; Strollo, P.J., Jr.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.; Rogers, R.; Schwab, R.J.; Weaver, E.M.; et al. Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009, 15, 263–276. [Google Scholar]
- Carneiro-Barrera, A.; Díaz-Román, A.; Guillén-Riquelme, A.; Buela-Casal, G. Weight loss and lifestyle interventions for obstructive sleep apnoea in adults: Systematic review and meta-analysis. Obes. Rev. 2019, 20, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Maki-Nunes, C.; Toschi-Dias, E.; Cepeda, F.X.; Rondon, M.U.; Alves, M.J.; Fraga, R.F.; Braga, A.M.; Aguilar, A.M.; Amaro, A.C.; Drager, L.F.; et al. Diet and exercise improve chemoreflex sensitivity in patients with metabolic syndrome and obstructive sleep apnea. Obesity 2015, 23, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.F.; Araújo Lda, S.; Kaiser, S.E.; Sanjuliani, A.F.; Klein, M.R. The effects of moderate energy restriction on apnoea severity and CVD risk factors in obese patients with obstructive sleep apnoea. Br. J. Nutr. 2015, 28, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Igelström, H.; Åsenlöf, P.; Emtner, M.; Lindberg, E. Improvement in obstructive sleep apnea after a tailored behavioural sleep medicine intervention targeting healthy eating and physical activity: A randomised controlled trial. Sleep Breath 2018, 22, 653–661. [Google Scholar] [CrossRef]
- Ng, S.S.S.; Chan, R.S.M.; Woo, J.; Chan, T.O.; Cheung, B.H.K.; Sea, M.M.M.; To, K.W.; Chan, K.K.P.; Ngai, J.; Yip, W.H.; et al. A Randomized Controlled Study to Examine the Effect of a Lifestyle Modification Program in OSA. Chest 2015, 148, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Neovius, M.; Lagerros, Y.T.; Harlid, R.; Rössner, S.; Granath, F.; Hemmingsson, E. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: A randomised controlled trial. BMJ 2009, 3, b4609. [Google Scholar] [CrossRef]
- Tuomilehto, H.P.; Seppä, J.M.; Partinen, M.M.; Peltonen, M.; Gylling, H.; Tuomilehto, J.O.; Vanninen, E.J.; Kokkarinen, J.; Sahlman, J.K.; Martikainen, T.; et al. Kuopio Sleep Apnea Group. Lifestyle intervention with weight reduction: First-line treatment in mild obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2009, 15, 320–327. [Google Scholar] [CrossRef]
- Foster, G.D.; Borradaile, K.E.; Sanders, M.H.; Millman, R.; Zammit, G.; Newman, A.B.; Wadden, T.A.; Kelley, D.; Wing, R.R.; Pi-Sunyer, F.X.; et al. Sleep AHEAD Research Group of Look AHEAD Research Group. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: The Sleep AHEAD study. Arch. Intern. Med. 2009, 28, 1619–1626. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e100009. [Google Scholar] [CrossRef] [PubMed]
- Fiori, C.Z.; Martinez, D.; Montanari, C.C.; Lopez, P.; Camargo, R.; Sezerá, L.; Gonçalves, S.C.; Fuchs, F.D. Diuretic or sodium-restricted diet for obstructive sleep apnea-a randomized trial. Sleep 2018, 1, 41. [Google Scholar] [CrossRef] [PubMed]
- de Melo, C.M.; Dos Santos Quaresma, M.V.L.; Del Re, M.P.; Ribeiro, S.M.L.; Moreira Antunes, H.K.; Togeiro, S.M.; Tufik, S.; de Mello, M.T. One-month of a low-energy diet, with no additional effect of high-protein, reduces Obstructive Sleep Apnea severity and improve metabolic parameters in obese males. Clin. Nutr. ESPEN 2021, 42, 82–89. [Google Scholar] [CrossRef]
- Trzepizur, W.; Bironneau, V.; Recoquillon, S.; Priou, P.; Meslier, N.; Hamel, J.F.; Henni, S.; Darsonval, A.; Messaoudi, K.; Martínez, M.C.; et al. Polyphenols Have No Impact on Endothelial Function in Patients with Obstructive Sleep Apnea: A Randomized Controlled Trial. J. Nutr. 2018, 1, 581–586. [Google Scholar] [CrossRef]
- Sahlman, J.; Seppä, J.; Herder, C.; Peltonen, M.; Peuhkurinen, K.; Gylling, H.; Vanninen, E.; Tukiainen, H.; Punnonen, K.; Partinen, M.; et al. Effect of weight loss on inflammation in patients with mild obstructive sleep apnea. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 583–590. [Google Scholar] [CrossRef]
- Nerfeldt, P.; Nilsson, B.Y.; Uddén, J.; Rössner, S.; Friberg, D. Weight reduction improves nocturnal respiration in obese sleep apnoea patients-A randomized controlled pilot study. Obes. Res. Clin. Pract. 2008, 2, 71–142. [Google Scholar] [CrossRef]
- Kerley, C.P.; Hutchinson, K.; Bramham, J.; McGowan, A.; Faul, J.; Cormican, L. Vitamin D Improves Selected Metabolic Parameters but Not Neuropsychological or Quality of Life Indices in OSA: A Pilot Study. J. Clin. Sleep. Med. 2017, 15, 19–26. [Google Scholar] [CrossRef]
- Georgoulis, M.; Yiannakouris, N.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. Cardiometabolic Benefits of a Weight-Loss Mediterranean Diet/Lifestyle Intervention in Patients with Obstructive Sleep Apnea: The “MIMOSA” Randomized Clinical Trial. Nutrients 2020, 28, 1570. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, M.; Yiannakouris, N.; Tenta, R.; Fragopoulou, E.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. A weight-loss Mediterranean diet/lifestyle intervention ameliorates inflammation and oxidative stress in patients with obstructive sleep apnea: Results of the “MIMOSA” randomized clinical trial. Eur. J. Nutr. 2021, 2021, 3799–3810. [Google Scholar] [CrossRef]
- Georgoulis, M.; Yiannakouris, N.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. The effectiveness of a weight-loss Mediterranean diet/lifestyle intervention in the management of obstructive sleep apnea: Results of the “MIMOSA” randomized clinical trial. Clin. Nutr. 2021, 40, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Assessing Risk of Bias in Non-Randomized Studies. Chapter 13.5.2.3. Available online: http://handbook-5-1.cochrane.org/ (accessed on 28 February 2023).
- RoB 2: A Revised Cochrane Risk-of-Bias Tool for Randomized Trials. Available online: https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials (accessed on 28 February 2023).
- Minozzi, S.; Cinquini, M.; Gianola, S.; Gonzalez-Lorenzo, M.; Banzi, R. The revised Cochrane risk of bias tool for randomized trials (RoB 2) showed low interrater reliability and challenges in its application. J. Clin. Epidemiol. 2020, 126, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.; Tew, G.A.; Copeland, R.J.; Stout, M.; Billings, C.G.; Saxton, J.M.; Winter, E.M.; Bianchi, S.M. Effects of a pragmatic lifestyle intervention for reducing body mass in obese adults with obstructive sleep apnoea: A randomised controlled trial. Biomed. Res. Int. 2014, 2014, 102164. [Google Scholar] [CrossRef]
- López-Padrós, C.; Salord, N.; Alves, C.; Vilarrasa, N.; Gasa, M.; Planas, R.; Montsserrat, M.; Virgili, M.N.; Rodríguez, C.; Pérez-Ramos, S.; et al. Effectiveness of an intensive weight-loss program for severe OSA in patients undergoing CPAP treatment: A randomized controlled trial. J. Clin. Sleep. Med. 2020, 15, 503–514. [Google Scholar] [CrossRef]
- Carneiro-Barrera, A.; Amaro-Gahete, F.J.; Guillén-Riquelme, A.; Jurado-Fasoli, L.; Sáez-Roca, G.; Martín-Carrasco, C.; Buela-Casal, G.; Ruiz, J.R. Effect of an Interdisciplinary Weight Loss and Lifestyle Intervention on Obstructive Sleep Apnea Severity: The INTERAPNEA Randomized Clinical Trial. JAMA Netw. Open 2022, 1, e228212. [Google Scholar] [CrossRef]
- Schiavo, L.; Pierro, R.; Asteria, C.; Calabrese, P.; Di Biasio, A.; Coluzzi, I.; Severino, L.; Giovanelli, A.; Pilone, V.; Silecchia, G. Low-Calorie Ketogenic Diet with Continuous Positive Airway Pressure to Alleviate Severe Obstructive Sleep Apnea Syndrome in Patients with Obesity Scheduled for Bariatric/Metabolic Surgery: A Pilot, Prospective, Randomized Multicenter Comparative Study. Obes. Surg. 2022, 32, 634–642. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Gurubhagavatula, I.; Teff, K.; Rader, D.J.; Wadden, T.A.; Townsend, R.; Foster, G.D.; Maislin, G.; Saif, H.; Broderick, P.; et al. CPAP, weight loss, or both for obstructive sleep apnea. N. Engl. J. Med. 2014, 12, 2265–2275. [Google Scholar] [CrossRef]
- Barceló, A.; Morell-Garcia, D.; Salord, N.; Esquinas, C.; Pérez, G.; Pérez, A.; Monasterio, C.; Gasa, M.; Fortuna, A.M.; Montserrat, J.M.; et al. A randomized controlled trial: Branched-chain amino acid levels and glucose metabolism in patients with obesity and sleep apnea. J. Sleep Res. 2017, 26, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Carneiro-Barrera, A.; Amaro-Gahete, F.J.; Jurado-Fasoli, L.; Sáez-Roca, G.; Martín-Carrasco, C.; Tinahones, F.J.; Ruiz, J.R. Effect of a Weight Loss and Lifestyle Intervention on Dietary Behavior in Men with Obstructive Sleep Apnea: The INTERAPNEA Trial. Nutrients 2022, 30, 2731. [Google Scholar] [CrossRef] [PubMed]
- Carneiro-Barrera, A.; Amaro-Gahete, F.J.; Díaz-Román, A.; Guillén-Riquelme, A.; Jurado-Fasoli, L.; Sáez-Roca, G.; Martín-Carrasco, C.; Ruiz, J.R.; Buela-Casal, G. Interdisciplinary Weight Loss and Lifestyle Intervention for Obstructive Sleep Apnoea in Adults: Rationale, Design and Methodology of the INTERAPNEA Study. Nutrients 2019, 15, 2227. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014, 22, 736–747. [Google Scholar] [CrossRef]
- Ahbab, S.; Ataoğlu, H.E.; Tuna, M.; Karasulu, L.; Cetin, F.; Temiz, L.U.; Yenigün, M. Neck circumference, metabolic syndrome and obstructive sleep apnea syndrome; evaluation of possible linkage. Med. Sci. Monit. 2013, 13, 111–117. [Google Scholar] [CrossRef]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 6, 706978. [Google Scholar] [CrossRef]
- Sankri-Tarbichi, A.G. Obstructive sleep apnea-hypopnea syndrome: Etiology and diagnosis. Avicenna J. Med. 2012, 2, 3–8. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; Martone, A.M.; Ortolani, E.; Sisto, A.; D’Angelo, E.; Serafini, E.; Desideri, G.; et al. Body Mass Index is Strongly Associated with Hypertension: Results from the Longevity Check-up 7+ Study. Nutrients 2018, 13, 1976. [Google Scholar] [CrossRef]
- Benjamin, J.A.; Lewis, K.E. Sleep-disordered breathing and cardiovascular disease. Postgrad. Med. J. 2008, 84, 15–22. [Google Scholar] [CrossRef]
- Horn, J.W.; Feng, T.; Mørkedal, B.; Strand, L.B.; Horn, J.; Mukamal, K.; Janszky, I. Obesity and Risk for First Ischemic Stroke Depends on Metabolic Syndrome: The HUNT Study. Stroke 2021, 52, 3555–3561. [Google Scholar] [CrossRef]
- Valham, F.; Mooe, T.; Rabben, T.; Stenlund, H.; Wiklund, U.; Franklin, K.A. Increased risk of stroke in patients with coronary artery disease and sleep apnea: A 10-year follow-up. Circulation 2008, 26, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, D.J. Sleep Apnea and Cardiovascular Disease. Curr. Diab. Rep. 2021, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.E.; van Vliet, S.; Cao, C.; Patterson, B.W.; Reeds, D.N.; Laforest, R.; Gropler, R.J.; Ju, Y.S.; Mittendorfer, B. Effect of obstructive sleep apnea on glucose metabolism. Eur. J. Endocrinol. 2022, 23, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Dobrosielski, D.A.; Papandreou, C.; Patil, S.P.; Salas-Salvadó, J. Diet and exercise in the management of obstructive sleep apnoea and cardiovascular disease risk. Eur. Respir. Rev. 2017, 28, 160110. [Google Scholar] [CrossRef]
Database | Electronic Literature Searching Strategy |
---|---|
PubMed | ((obstructive sleep apnea[Title/Abstract]) OR (obstructive sleep apnea[Title/Abstract]) OR (OSA[Title/Abstract]) OR (OSAS[Title/Abstract]) OR (OSAHS[Title/Abstract]) OR (sleep-disordered breathing[Title/Abstract])) AND (diet OR nutrition OR nutrient OR nutrients) |
Web of Science | (Topic)=((obstructive sleep apnea) OR (obstructive sleep apnea) OR (OSA) OR (OSAS) OR (OSAHS) OR (sleep-disordered breathing)) AND (All fields)=((diet) OR (nutrition) OR (nutrient) OR (nutrients)) |
PICOS Criteria | Inclusion | Exclusion |
---|---|---|
Population | Adult patients with obstructive sleep apnea diagnosed and treated with positive airway pressure | Pregnant or lactating women, populations with any concurrent disease diagnosed other than excessive body mass, such as mental health problems, eating disorders, or intellectual disabilities |
Intervention/exposure | Any kind of dietary intervention | Not described dietary intervention |
Comparison | Effect compared with effect observed for control group with no dietary intervention or any other kind of dietary intervention | No comparison with control or reference groups |
Outcome | Any objective or subjective method of assessment of obstructive sleep apnea | No valid method of assessment of obstructive sleep apnea applied |
Study design | Randomized controlled trials (RCTs) published in peer-reviewed journals | Not published in English, animal model studies |
Ref. | Authors and Year | Country and Detailed Location | General Description of the Studied Population | Period of the Study | Number of Participants (Female) | Age | Inclusion and Exclusion Criteria |
---|---|---|---|---|---|---|---|
[23] | Johansson et al., 2009 | Sweden, Stockholm | Male patients with moderate-to-severe obstructive sleep apnea treated with CPAP at the Obesity Unit at Karolinska University Hospital, Karolinska Institute | February–April 2009 | 66 (-) | Dietary intervention group: 47.5 ± 7.5 years Control group: 49.9 ± 7.1 years | Inclusion: men; 30–65 years; moderate to severe obstructive sleep apnea (AHI ≥ 15); CPAP treatment ≥ 6 months; BMI 30–40 kg/m2 Exclusion: contraindications for very low energy diets (~450–800 kcal/day) according to the SCOOP-VLED report; type 1 or type 2 diabetes; current use of a weight loss drug; previous bariatric surgery; recent angina pectoris or atrial fibrillation |
[39] | Moss et al., 2014 | UK, Sheffield | Patients with at least moderate obstructive sleep apnea treated with CPAP in sleep clinics at Sheffield Teaching Hospitals National Health Service Foundation Trust | February 2010–December 2011 * | 60 (14) * | Lifestyle intervention group: 55 ± 10 years * Advice-only control group: 56 ± 12 years * | Inclusion: 18–85 years; at least moderate obstructive sleep apnea (AHI > 15; oxygen desaturation index > 15; ESS > 11); BMI > 30 kg/m2; CPAP treatment Exclusion: any contraindications to exercise testing and training; refusal to undertake the study commitments (e.g., exercise > 30 min ≥ three times per week) |
[40] | López-Padrós et al., 2020 | Spain, Barcelona | Patients with obesity and severe obstructive sleep apnea treated with CPAP in the Sleep Unit at the Bellvitge University Hospital | November 2014–April 2017 * | 42 (4) | Weight-loss intervention group: 48.2 ± 6.9 years * Control group: 49.4 ± 6.6 years * | Inclusion: 25–60 years; severe obstructive sleep apnea (AHI > 30); BMI 30–40 kg/m2; CPAP treatment ≥ 6 months Exclusion: contraindications for physical activity or diet; cognitive impairment, psychiatric disorders that impeded patients’ understanding of the program; severe diseases; major cardiovascular disease; clinical instability within the previous month; bariatric surgery; participation in another clinical trial |
[41] | Carneiro-Barrera et al., 2022 | Spain, Granada | Male patients with moderate-to-severe obstructive sleep apnea treated with CPAP from a hospital-based referral center in Granada, within the INTERAPNEA randomized controlled trial | April 2019–October 2020 | 89 (-) | Weight loss and lifestyle intervention group: 52.6 ± 7.1 years Control group: 55.3 ± 8.5 years | Inclusion: men; 18–65 years; moderate to severe obstructive sleep apnea (AHI ≥ 15); BMI ≥ 25 kg/m2; CPAP treatment Exclusion: any other primary sleep disorder; any mental disorder; any other severe organic disease, except for those comorbid to obstructive sleep apnea; regular use of neuroleptic, sedative or hypnotic drugs, or any other medication that may cause sleep disturbances or increased daytime sleepiness; current participation in any other weight loss program [46] |
[42] | Schiavo et al., 2022 | Italy | Patients with obesity and severe obstructive sleep apnea treated with CPAP and scheduled for bariatric surgery | January 2019–April 2021 | 70 (26) | Total: 42 ± 13.7 years | Inclusion: 18–65 years; BMI ≥ 35 kg/m2; severe obstructive sleep apnea (AHI ≥ 30); non-smokers or quit smoking at 3 months ago Exclusion: kidney and liver conditions that would make low-calorie ketogenic diet unsuitable; psychological problems that would make CPAP treatment problematic; BMI > 60 kg/m2 |
Ref. | Studied Groups | Description of Dietary Interventions | Duration of Intervention | Monitored Variables | Conclusions of the Study for Influence of Diet Therapy * |
---|---|---|---|---|---|
[23] | (1) Dietary intervention group (2) Control group | (1) Weight loss program: 7 weeks of very low energy liquid diet (~550 kcal/day) + 2 weeks of gradual introduction of normal food to reach ~1500 kcal/day, monitored by urinary ketosis examination and supported by group sessions supervised by dietitians (2) Their usual diet | 9 weeks | Apnea–hypopnea index (AHI) | Supporting |
Apnea–hypopnea index–supine (AHI-S) | |||||
Percentage supine time | |||||
Oxygen desaturation episodes ≥ 4%/h of sleep | |||||
Oxygen desaturation episodes ≥ 4%/h of sleep-supine | |||||
Arterial oxygen saturation | |||||
Epworth Sleepiness Scale score | |||||
[39] | (1) Lifestyle intervention group (2) Advice-only control group | (1) Supervised exercise sessions accompanied by dietary education and advice based on the principles of the eatwell plate model, developed on the basis of 3-day dietary record to identify dietary imbalance and set goals (2) Basic written lifestyle advice accompanied by the weight loss leaflet | 12 weeks | Quality of life (EuroQol EQ5D-3L VAS) | Somehow supporting |
[40] | (1) Weight-loss intervention group (2) Control group | (1) The very low calorie diet (600–800 kcal) with low-calorie liquid meal replacements for 15 days, followed by a 1200 kcal diet for 2.5 months, followed by a hypocaloric (1200–1800 kcal) Mediterranean diet for the remaining 36 weeks, accompanied by unsupervised physical activity after 15 days and by behavioral counselling (2) General oral and written information about diet and physical activity, accompanied by estimation of intake of nutrients at baseline, after 3 and 12 months | 12 months | Sleep efficiency | Supporting |
Deep sleep | |||||
Superficial sleep | |||||
REM sleep | |||||
Apnea–hypopnea index (AHI) | |||||
AHI-supine (AHI-S) | |||||
AHI-non-supine (AHI-NS) | |||||
AHI-S/AHI-NS ratio | |||||
AHI-REM | |||||
AHI-non-REM | |||||
Supine time | |||||
REM sleep time | |||||
Deep sleep time | |||||
Superficial sleep time | |||||
OSA type (positional/not) | |||||
Sleep time with SpO2 < 90 | |||||
Epworth Sleepiness Scale score | |||||
[41] | (1) Weight loss and lifestyle intervention group (2) Control group | (1) The interdisciplinary weight loss and lifestyle intervention comprising five components (nutritional behavior change, moderate aerobic exercise, smoking cessation, alcohol intake avoidance, and sleep hygiene), including group-based weekly sessions of 60–90 min led and supervised by professionals in each field (2) General advice on weight loss and lifestyle changes in a single 30-min session | 8 weeks | Apnea–hypopnea index (AHI) | Supporting |
Oxygen desaturation episodes ≥ 3%/h of sleep | |||||
Mean SpO2 | |||||
SpO2 nadir | |||||
Sleep time with SpO2 < 90 | |||||
Sleep efficiency | |||||
Sleep latency | |||||
Wake after sleep onset | |||||
Non-rapid eye movement stage 1 (N1) sleep | |||||
Non-rapid eye movement stage 2 (N2) sleep | |||||
Non-rapid eye movement stage 3 (N3) sleep | |||||
N1 + N2 sleep | |||||
REM sleep | |||||
AHI-REM | |||||
AHI-non-REM | |||||
Pittsburgh Sleep Quality Index | |||||
Epworth Sleepiness Scale score | |||||
[42] | (1) Low-calorie ketogenic diet group (2) Control group | (1) Energy value of 1150–1250 kcal/day (4% carbohydrates, 71% fats, 25% proteins) within 2 plans (days 1–14 and 15–28) assigned individual foods with specified quantity and protein supplement provided (2) No diet | 4 weeks | Apnea–hypopnea index (AHI) | Not supporting |
Ref. | D1 | D2 | D3 | D4 | D5 | Overall Bias |
---|---|---|---|---|---|---|
[23] | ||||||
[41] | ||||||
[42] | ||||||
[43] | ||||||
[44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzek, D.; Głąbska, D. Diet Therapy of Obstructive Sleep Apnea Syndrome Treated with Positive Airway Pressure: A Systematic Review of Randomized Controlled Trials. Appl. Sci. 2023, 13, 5105. https://doi.org/10.3390/app13085105
Guzek D, Głąbska D. Diet Therapy of Obstructive Sleep Apnea Syndrome Treated with Positive Airway Pressure: A Systematic Review of Randomized Controlled Trials. Applied Sciences. 2023; 13(8):5105. https://doi.org/10.3390/app13085105
Chicago/Turabian StyleGuzek, Dominika, and Dominika Głąbska. 2023. "Diet Therapy of Obstructive Sleep Apnea Syndrome Treated with Positive Airway Pressure: A Systematic Review of Randomized Controlled Trials" Applied Sciences 13, no. 8: 5105. https://doi.org/10.3390/app13085105
APA StyleGuzek, D., & Głąbska, D. (2023). Diet Therapy of Obstructive Sleep Apnea Syndrome Treated with Positive Airway Pressure: A Systematic Review of Randomized Controlled Trials. Applied Sciences, 13(8), 5105. https://doi.org/10.3390/app13085105