Utilizing Different Machine Learning Techniques to Examine Speeding Violations
Abstract
:1. Introduction
2. Materials and Methods
- TP: True-positive classified instances.
- TN: True-negative classified instances.
- FP: False-positive classified instances.
- FN: False-negative classified instances.
- True positive is the number of times the predicted value is positive, and it is truly positive [43].
- False positive is the number of times the predicted value is positive, but it is truly negative [43].
- True negative is the number of times the predicted value is negative, and it is truly negative [43].
- False negative is the number of times the predicted value is negative, but it is truly positive [43].
- RMSE: Root Mean Squared Error.
- : ith observation predicted value.
- : ith observation actual value.
- N: Observations number.
- : Observed instances.
- : Expected instances.
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. Centers for Disease Control and Prevention. Road Traffic Injuries and Deaths—A Global Problem. 2020. Available online: https://www.cdc.gov/injury/features/global-road-safety/index.html (accessed on 10 January 2023).
- Lee, N. Speed-Related Car Accidents Cost the U.S. over $40 Billion Annually. Lowering the Limit May Not Help. Consumer News and Business Channel. Available online: https://www.cnbc.com/2021/12/16/heres-why-speed-limits-arent-working-in-the-us.html (accessed on 10 January 2023).
- NHTSA. National Highway Traffic Safety Administration. Speeding|NHTSA. Available online: https://www.nhtsa.gov/risky-driving/speeding (accessed on 10 January 2023).
- Weng, J.; Meng, Q. Effects of environment, vehicle and driver characteristics on risky driving behavior at work zones. Saf. Sci. 2012, 50, 1034–1042. [Google Scholar] [CrossRef]
- Svenson, O.; Eriksson, G.; Slovic, P.; Mertz, C.K.; Fuglestad, T. Effects of main actor, outcome and affect on biased braking speed judgments. Judgm. Decis. Mak. 2012, 7, 235–243. [Google Scholar] [CrossRef]
- IIHS-HLDI Crash Testing and Highway Safety. Speed. 2021. Available online: https://www.iihs.org/topics/speed (accessed on 1 February 2022).
- WHO, World Health Organization. Road Traffic Injuries. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries#:~:text=Key%20facts,road%20traffic%20crashes%20by%202020 (accessed on 10 January 2023).
- Sayed, T.; Abdelwahab, W.; Navin, F. Identifying accident-prone locations using fuzzy pattern recognition. J. Transp. Eng. 1995, 121, 352–358. [Google Scholar] [CrossRef]
- WHO, World Health Organization. Urban Speed Limit Range. Available online: https://www.who.int/gho/road_safety/legislation/situation_trends_urban_speed_limit/en/ (accessed on 1 February 2023).
- Alomari, A.H.; Al-Omari, B.H.; Al-Adwan, M.E.; Sandt, A. Investigating and modeling speed variability on multilane highways. Adv. Transp. Stud. 2021, 54, 5–16. [Google Scholar]
- Alomari, A.H.; Al-Omari, B.H.; Al-Adwan, M.E. Analysis of speed variance on multilane highways in Jordan. In Proceedings of the 1st International Congress on Engineering Technologies, Irbid, Jordan, 16–18 June 2020; CRC Press: Boca Raton, FL, USA, 2021; pp. 206–216. [Google Scholar] [CrossRef]
- Build, Price, Option. Top 8 Reasons Why Drivers Speed—Build, Price, Option. 2020. Available online: https://www.buildpriceoption.com/top-8-reasons-why-drivers-speed/ (accessed on 10 January 2023).
- Gargoum, S.A.; El-Basyouny, K.; Kim, A. Towards setting credible speed limits: Identifying factors that affect driver compliance on urban roads. Accid. Anal. Prev. 2016, 95, 138–148. [Google Scholar] [CrossRef]
- Kanellaidis, G.; Golias, J.; Zarifopoulos, K. A survey of drivers' attitudes toward speed limit violations. J. Saf. Res. 1995, 26, 31–40. [Google Scholar] [CrossRef]
- Afghari, A.P.; Haque, M.M.; Washington, S. Applying fractional split model to examine the effects of roadway geometric and traffic characteristics on speeding behavior. Traffic Inj. Prev. 2018, 19, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, D.; Tang, J. Taxi driver speeding: Who, when, where and how? A comparative study between Shanghai and New York City. Traffic Inj. Prev. 2018, 19, 311–316. [Google Scholar] [CrossRef]
- Tseng, C.M. Speeding violations related to a driver’s social-economic demographics and the most frequent driving purpose in Taiwan’s male population. Saf. Sci. 2013, 57, 236–242. [Google Scholar] [CrossRef]
- Zhang, G.; Yau, K.K.; Gong, X. Traffic violations in Guangdong Province of China: Speeding and drunk driving. Accid. Anal. Prev. 2014, 64, 30–40. [Google Scholar] [CrossRef]
- Liang, Z.; Xiao, Y. Analysis of factors influencing expressway speeding behavior in China. PLoS ONE 2020, 15, e0238359. [Google Scholar] [CrossRef]
- Al Matawaha, J.; Jadaan, K.; Freeman, B. Analysis of speed related behavior of Kuwaiti drivers using the driver behavior questionnaire. Period. Polytech. Transp. Eng. 2020, 48, 150–158. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Sivasankaran, S. Analysis of factors associated with exceeding lawful speed traffic violations in Indian metropolitan city. J. Transp. Saf. Secur. 2021, 13, 206–222. [Google Scholar] [CrossRef]
- Al-Mistarehi, B.W.; Alomari, A.H.; Imam, R.; Alnaasan, T.K. Investigating the Factors Affecting Speeding Violations in Jordan Using Phone Camera, Radar, and Machine Learning. Front. Built Environ. 2022, 8, 917017. [Google Scholar] [CrossRef]
- Mohammadazadeh, A.; Sabzalian, M.H.; Castillo, O.; Sakthivel, R.; El-Sousy, F.F.; Mobayen, S. Neural Networks and Learning Algorithms in MATLAB; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Mohammadzadeh, A.; Sabzalian, M.H.; Zhang, C.; Castillo, O.; Sakthivel, R.; El-Sousy, F.F. Modern Adaptive Fuzzy Control Systems (Vol. 421); Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Alomari, A.H.; Khedaywi, T.S.; Jadah, A.A.; Marian, A.R.O. Evaluation of Public Transport among University Commuters in Rural Areas. Sustainability 2023, 15, 312. [Google Scholar] [CrossRef]
- Alomari, A.H.; Khedaywi, T.S.; Marian, A.R.O.; Jadah, A.A. Traffic speed prediction techniques in urban environments. Heliyon 2022, 8, e11847. [Google Scholar] [CrossRef]
- Alomari, A.H.; Abu Lebdeh, E. Smart real-time vehicle detection and tracking system using road surveillance cameras. J. Transp. Eng. Part A Syst. 2022, 148, 04022076. [Google Scholar] [CrossRef]
- Al-Mistarehi, B.W.; Alomari, A.H.; Imam, R.; Mashaqba, M. Using machine learning models to forecast severity level of traffic crashes by r studio and arcgis. Front. Built Environ. 2022, 16648714, 31. [Google Scholar] [CrossRef]
- NHTSA, National Highway Traffic Safety Administration. Fatality Analysis Reporting System (FARS). Available online: https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars (accessed on 10 January 2023).
- Aljarrah, M.F.; Khasawneh, M.A.; Al-Omari, A.A. Investigating Key Factors Influencing the Severity of Drivers Injuries in Car Crashes Using Supervised Machine Learning Techniques. J. Eng. Sci. Technol. Rev. 2019, 12, 15–27. [Google Scholar] [CrossRef]
- Witten, I.; Frank, E.; Hall, M.; Pal, C. The WEKA Workbench. In Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Kingsford, C.; Salzberg, S. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef]
- Ampadu, H. Decision Trees. 2021. Available online: https://ai-pool.com/a/s/decision-trees (accessed on 25 December 2022).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Nasution, A.K.; Wijaya, S.H.; Gao, P.; Islam, R.M.; Huang, M.; Ono, N.; Kanaya, S.; Altaf-Ul-Amin, M. Prediction of Potential Natural Antibiotics Plants Based on Jamu Formula Using Random Forest Classifier. Antibiotics 2022, 11, 1199. [Google Scholar] [CrossRef]
- Mohanty, A. Multi-Layer Perceptron (MLP) Models on Real World Banking Data. Available online: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f (accessed on 10 January 2023).
- Noriega, L. Multilayer Perceptron Tutorial. School of Computing. Ph.D. Thesis, Staffordshire University, Stoke-on-Trent, UK, 2005. [Google Scholar]
- Almeida, L.B. Multilayer perceptrons. In Handbook of Neural Computation C; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Chawla, N.; Bowyer, K.; Hall, L.; Kegelmeyer, W. SMOTE. Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- What is Data Accuracy, Why it Matters and How Companies Can Ensure They Have Accurate Data. 2020. Available online: https://dataladder.com/what-is-data-accuracy/ (accessed on 8 April 2023).
- Towards Data Science. Accuracy, Recall, Precision, F-Score & Specificity, Which to Optimize on? 2019. Available online: https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124 (accessed on 8 April 2023).
- What is a Confusion Matrix in Machine Learning? 2023. Available online: https://www.simplilearn.com/tutorials/machine-learning-tutorial/confusion-matrix-machine-learning#:~:text=A%20confusion%20matrix%20presents%20a,actual%20values%20of%20a%20classifier (accessed on 8 April 2023).
- DeepAI. What Is the F-Score? 2023. Available online: https://deepai.org/machine-learning-glossary-and-terms/f-score (accessed on 8 April 2023).
- Zamanov, M.S. Development of a Prediction Model for Speed Limit Violations on Tangent Road Sections. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Javid, M.A.; Al-Roushdi, A.F.A. Causal factors of driver’s speeding behaviour, a case study in Oman: Role of norms, personality, and exposure aspects. Int. J. Civ. Eng. 2019, 17, 1409–1419. [Google Scholar] [CrossRef]
- Wu, Y.W.; Hsu, T.P. Mining characteristics of speeding and red-light running violations using association rules. J. East. Asia Soc. Transp. Stud. 2019, 13, 2111–2125. [Google Scholar]
- Vos, J.; Farah, H.; Hagenzieker, M. How do Dutch drivers perceive horizontal curves on freeway interchanges and which cues influence their speed choice? IATSS Res. 2021, 45, 258–266. [Google Scholar] [CrossRef]
- Poe, C.; Tarris, J.; Mason, J. Operating speed approach to geometric design of low-speed urban streets. Transp. Res. Circ. 1998, 10, 1–9. [Google Scholar]
- Fitzpatrick, K.; Carlson, P.; Brewer, M.; Wooldridge, M. Design Factors That Affect Driver Speed on Suburban Streets. Transp. Res. Rec.: J. Transp. Res. Board 2001, 1751, 18–25. [Google Scholar] [CrossRef]
- Shawky, M.; Sahnoon, I.; Al-Zaidy, A. Predicting speed-related traffic violations on rural highways. In Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering (CSEE’17), Barcelona, Spain, 2–4 April 2017; Volume 117. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Yuan, J.; Lu, J.; Abdel-Aty, M. Analysis and prediction of intersection traffic violations using automated enforcement system data. Accid. Anal. Prev. 2021, 162, 106422. [Google Scholar] [CrossRef]
- Ambo, T.B.; Ma, J.; Fu, C. Investigating influence factors of traffic violation using multinomial logit method. Int. J. Inj. Control. Saf. Promot. 2021, 28, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Sutela, M.; Aaltonen, M. Effects of temporal characteristics and weather conditions on speeding sanction rates in automatic traffic enforcement. Police J. 2021, 94, 590–615. [Google Scholar] [CrossRef]
Variable | Category | Count | Percent | Variable | Category | Count | Percent |
---|---|---|---|---|---|---|---|
Speeding Violation | Yes | 8175 | 16.0 | Gender | Female | 14,275 | 27.9 |
No | 42,961 | 84.0 | Male | 36,861 | 72.1 | ||
Traffic Way Direction | One way | 771 | 1.5 | Road Grade | Level | 45,181 | 88.4 |
Two way | 50,365 | 98.5 | Ascending | 3214 | 6.3 | ||
- | - | - | Descending | 2741 | 5.4 | ||
Holiday | Yes | 1446 | 2.80 | Area Type | Rural | 20,820 | 40.7 |
No | 49,690 | 97.20 | Urban | 30,316 | 59.3 | ||
Day of The Week | Weekend | 16,539 | 32.30 | Work Zone | Yes | 1600 | 3.1 |
Weekday | 34,597 | 67.70 | No | 49,536 | 96.9 | ||
Road Alignment | Straight | 42,491 | 83.1 | Traffic Control | Yes | 8518 | 16.7 |
Curve | 8645 | 16.9 | No | 42,618 | 83.3 | ||
Accident Year | 2015 | 12,716 | 24.9 | Road Surface Condition | Dry | 44,387 | 86.8 |
2016 | 12,043 | 23.6 | Wet | 6223 | 12.2 | ||
2017 | 7112 | 13.9 | Snow | 366 | 0.7 | ||
2018 | 10,658 | 20.8 | Mud | 98 | 0.2 | ||
2019 | 8607 | 16.8 | slush | 62 | 0.1 | ||
License Type | Full | 50,003 | 97.8 | Season | Spring | 12,984 | 25.4 |
Intermediate | 759 | 1.5 | Summer | 13,090 | 25.6 | ||
Learner | 333 | 0.7 | Autumn | 13,335 | 26.1 | ||
Temporary | 41 | 0.1 | Winter | 11,727 | 22.9 | ||
Accident Time | 0:00–6:59 | 11,275 | 22.0 | Age | ≤25 | 11,004 | 21.5 |
7:00–8:59 | 3350 | 6.6 | 26–35 | 10,503 | 20.5 | ||
9:00–11:59 | 5060 | 9.9 | 36–45 | 8127 | 15.9 | ||
12:00–16:59 | 12,470 | 24.4 | 46–55 | 8068 | 15.8 | ||
17:00–19:59 | 8870 | 17.3 | 56–65 | 6570 | 12.8 | ||
20:00–23:59 | 10,111 | 19.8 | ≥66 | 6864 | 13.4 | ||
Light Condition | Daylight | 25,703 | 50.3 | Weather | Clear | 38,219 | 74.7 |
Dusk | 1361 | 2.7 | Rain | 3617 | 7.1 | ||
Dawn | 986 | 1.9 | Cloudy | 8144 | 15.9 | ||
Dark not lighted | 13,590 | 26.6 | Fog | 661 | 1.3 | ||
Dark lighted | 9496 | 18.6 | Snow | 334 | 0.7 | ||
Other | 161 | 0.3 | |||||
Number of Lanes | One | 27,828 | 54.4 | Speed Limit (km/h) | ≤30 | 287 | 0.6 |
Two | 9333 | 18.3 | 30–40 | 645 | 1.3 | ||
Three | 6836 | 13.4 | 40–50 | 3884 | 7.6 | ||
Four | 4511 | 8.8 | 50–60 | 5468 | 10.7 | ||
Five | 1611 | 3.2 | 60–70 | 3667 | 7.2 | ||
Six | 881 | 1.7 | 70–80 | 9520 | 18.6 | ||
Seven or more | 136 | 0.3 | 80–90 | 14,665 | 28.7 | ||
- | - | - | 90–100 | 2485 | 4.9 | ||
- | - | - | 100–110 | 4664 | 9.1 | ||
- | - | - | >110 | 5851 | 11.4 | ||
Vehicle model year | Before 1991 | 1116 | 2.2 | ||||
1991–2000 | 8941 | 17.5 | |||||
2000–2010 | 23,878 | 46.7 | |||||
2010–2020 | 17,201 | 33.6 |
Classifier | Accuracy% | RMSE | Kappa Statistic | F-Measure |
---|---|---|---|---|
RF | 86.42 | 0.3245 | 0.728 | 0.864 |
CART | 81.16 | 0.3972 | 0.623 | 0.811 |
MLP | 73.02 | 0.43 | 0.46 | 0.73 |
Classifier | Dependent Variable Classes | AUC Area | ROC Area |
---|---|---|---|
CART | Yes | 0.834 | 0.835 |
No | 0.834 | 0.835 | |
RF | Yes | 0.941 | 0.941 |
No | 0.941 | 0.941 | |
MLP | Yes | 0.807 | 0.808 |
No | 0.807 | 0.808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, A.H.; Al-Mistarehi, B.W.; Alnaasan, T.K.; Obeidat, M.S. Utilizing Different Machine Learning Techniques to Examine Speeding Violations. Appl. Sci. 2023, 13, 5113. https://doi.org/10.3390/app13085113
Alomari AH, Al-Mistarehi BW, Alnaasan TK, Obeidat MS. Utilizing Different Machine Learning Techniques to Examine Speeding Violations. Applied Sciences. 2023; 13(8):5113. https://doi.org/10.3390/app13085113
Chicago/Turabian StyleAlomari, Ahmad H., Bara’ W. Al-Mistarehi, Tasneem K. Alnaasan, and Motasem S. Obeidat. 2023. "Utilizing Different Machine Learning Techniques to Examine Speeding Violations" Applied Sciences 13, no. 8: 5113. https://doi.org/10.3390/app13085113
APA StyleAlomari, A. H., Al-Mistarehi, B. W., Alnaasan, T. K., & Obeidat, M. S. (2023). Utilizing Different Machine Learning Techniques to Examine Speeding Violations. Applied Sciences, 13(8), 5113. https://doi.org/10.3390/app13085113