Multi-Mode Imaging of Ambient Background Noise for Karst Detection in the Limestone Area Based on Frequency-Bessel Transform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory of the Frequency-Bessel Transform
2.2. Test with Synthetic Background Noise Data
3. Application to Field Data
3.1. Geological Background
3.2. Background Noise Data Acquisition
3.3. Dispersion Curve Calculation
3.4. Multi-Mode Dispersion Curve Comparison
4. Joint Inversion
4.1. Damped Least Squares Inversion
4.2. Multi-Order Joint Inversion of S-Wave Velocity Structure
5. Results
6. Discussion
7. Conclusions
- (1)
- Adding higher-mode dispersion information can improve the inversion fitting effect of the low-frequency band of the fundamental dispersion curve, and the joint inversion of the fundamental and higher-mode of the measured data improves the ability to identify the fine structure of the strata.
- (2)
- The shear wave velocity structure profile obtained from the inversion of background noise data in the limestone area of Wuhan depicts the range of the karst low-speed area, and the abnormal positions are in good agreement with the borehole data.
- (3)
- The thickness of the Quaternary overburden calculated by the frequency-Bessel algorithm is more accurate, and the undulation of the bottom interface of the Quaternary is closer to the real weathering state of the stratum.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gómez-Ortiz, D.; Martín-Crespo, T. Assessing the risk of subsidence of a sinkhole collapse using ground penetrating radar and electrical resistivity tomography. Eng. Geol. 2012, 149–150, 1–12. [Google Scholar] [CrossRef]
- De Waele, J.; Gutiérrez, F.; Parise, M.; Plan, L. Geomorphology and natural hazards in karst areas: A review. Geomorphology 2011, 134, 1–8. [Google Scholar] [CrossRef]
- Epting, J.; Huggenberger, P.; Glur, L. Integrated investigations of karst phenomena in urban environments. Eng. Geol. 2009, 109, 273–289. [Google Scholar] [CrossRef]
- Amanatidou, E.; Vargemezis, G.; Tsourlos, P. Combined application of seismic and electrical geophysical methods for karst cavities detection: A case study at the campus of the new University of Western Macedonia, Kozani, Greece. J. Appl. Geophys. 2022, 196, 104499. [Google Scholar] [CrossRef]
- Fernandes, A.L.; Medeiros, W.E.; Bezerra, F.H.R.; Oliveira, J.G.; Cazarin, C.L. GPR investigation of karst guided by comparison with outcrop and unmanned aerial vehicle imagery. J. Appl. Geophys. 2015, 112, 268–278. [Google Scholar] [CrossRef]
- Martínez-Moreno, F.J.; Galindo-Zaldívar, J.; Pedrera, A.; Teixido, T.; Ruano, P.; Peña, J.A.; González-Castillo, L.; Ruiz-Constán, A.; López-Chicano, M.; Martín-Rosales, W. Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). J. Appl. Geophys. 2014, 107, 149–162. [Google Scholar] [CrossRef]
- Verdet, C.; Sirieix, C.; Marache, A.; Riss, J.; Portais, J.-C. Detection of undercover karst features by geophysics (ERT) Lascaux cave hill. Geomorphology 2020, 360, 107177. [Google Scholar] [CrossRef]
- Foudili, D.; Bouzid, A.; Berguig, M.C.; Bougchiche, S.S.; Abtout, A.; Guemache, M.A. Investigating karst collapse geohazards using magnetotellurics: A case study of M’rara basin, Algerian Sahara. J. Appl. Geophys. 2019, 160, 144–156. [Google Scholar] [CrossRef]
- Lin, S.; Wang, W.; Jin, C.; Deng, X.; Liu, Z. Application and discussion of seismic CT in detailed karst detection: A case of Shenzhen metro line 14. Sci. Technol. Eng. 2019, 19, 18–23. [Google Scholar]
- Gan, F.; Han, K.; Lan, F.; Chen, Y.; Zhang, W. Multi-geophysical approaches to detect karst channels underground—A case study in Mengzi of Yunnan Province, China. J. Appl. Geophys. 2017, 136, 91–98. [Google Scholar] [CrossRef]
- QADY, G.E.; Hafez, M.; Abdalla, M.A.; Ushijima, K. Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. J. Cave Karst Stud. 2005, 67, 174–181. [Google Scholar]
- Leucci, G. Evaluation of karstic cave stability using integrated geophysical methods_2003. GeoActa 2003, 2, 75–88. [Google Scholar]
- Solbakk, T.; Fichler, C.; Wheeler, W.; Lauritzen, S.-E.; Ringrose, P. Detecting multiscale karst features including hidden caves using microgravimetry in a Caledonian nappe setting: Mefjell massif, Norway. Nor. J. Geol. 2018, 98, 359–378. [Google Scholar] [CrossRef]
- Wang, K.; Qian, J.; Zhang, H.; Gao, J.; Bi, D.; Gu, N. Seismic imaging of mine tunnels by ambient noise along linear arrays. J. Appl. Geophys. 2022, 203, 104718. [Google Scholar] [CrossRef]
- Jin, C.; Lin, S.; Wang, J.; Zhou, H.; Cheng, M. Estimation of Shallow Shear Velocity Structure in a Site with Weak Interlayer Based on Microtremor Array. Appl. Sci. 2022, 13, 185. [Google Scholar] [CrossRef]
- Tün, M.; Pekkan, E.; Özel, O.; Guney, Y. An investigation into the bedrock depth in the Eskisehir Quaternary Basin (Turkey) using the microtremor method. Geophys. J. Int. 2016, 207, 589–607. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, J.; Zhang, H.; Jiao, J. Mapping extraction dispersion curves of multi-mode Rayleigh waves in microtremors. Chin. J. Geophys. 2014, 57, 2631–2643. [Google Scholar]
- Pan, L.; Chen, X.; Wang, J.; Yang, Z.; Zhang, D. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes. Geophys. J. Int. 2019, 216, 1276–1303. [Google Scholar] [CrossRef]
- Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S. Joint inversion of high-frequency surface waves with fundamental and higher modes. J. Appl. Geophys. 2007, 62, 375–384. [Google Scholar] [CrossRef]
- Xia, J.; Miller, R.D.; Park, C.B.; Tian, G. Inversion of high frequency surface waves with fundamental and higher modes. J. Appl. Geophys. 2003, 52, 45–57. [Google Scholar] [CrossRef]
- Wang, J.; Wu, G.; Chen, X. Frequency-Bessel Transform Method for Effective Imaging of Higher-Mode Rayleigh Dispersion Curves From Ambient Seismic Noise Data. J. Geophys. Res. Solid Earth 2019, 124, 3708–3723. [Google Scholar] [CrossRef]
- Hu, S.; Luo, S.; Yao, H. The Frequency-Bessel Spectrograms of Multicomponent Cross-Correlation Functions From Seismic Ambient Noise. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019630. [Google Scholar] [CrossRef]
- Beaty, K.S.; Schmitt, D.R.; Sacchi, M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure. Geophys. J. Int. 2002, 151, 622–631. [Google Scholar] [CrossRef]
- Feng, S.; Takeshi, S.; Hiroaki, Y. Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations. Explor. Geophys. 2005, 36, 26–33. [Google Scholar] [CrossRef]
- Axe, T. An Unsupervised Wavelet Transform Method for Simultaneous Inversion of Multimode surface waves. J. Environ. Eng. 2005, 10, 287–294. [Google Scholar]
- Cai, W.; Song, X.; Yuan, S.; Hu, Y. Fast and stable Rayleigh-wave dispersion-curve inversion based on particle swarm optimization. Oil Geophys. Prospect. 2018, 53, 25–34. [Google Scholar] [CrossRef]
- Fu, D.; Liu, J.; Zhou, L.; Xu, H.; Liao, J.; Chen, S.; Guo, D. Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory. Chin. J. Geotech. Eng. 2015, 37, 321–329. [Google Scholar]
- Wang, Y.; Song, X.; Zhang, X. Research on nonlinear inversion of seismic surface waves based on artificial neural network algorithm. Oil Geophys. Prospect. 2021, 56, 979–991. [Google Scholar] [CrossRef]
- Yu, D.; Song, X.; Zhang, X.; Zhao, S.; Cai, W. Rayleigh wave dispersion inversion based on grasshopper optimization algorithm. Oil Geophys. Prospect. 2019, 54, 288–301. [Google Scholar] [CrossRef]
- Aki, K. Space and time spectra of stationary stochastic waves with special reference to microtremors. Bull. Earthq. Res. Inst. 1957, 35, 415–456. [Google Scholar]
- Okada, H. Theory of efficient array observations of microtremors with special reference to the SPAC method. Explor. Geophys. 2006, 37, 73–85. [Google Scholar] [CrossRef]
- You, Z.; Xu, P.; Ling, S.; Du, Y.; Zhang, R.; Yao, J.; Zhang, H. Estimation of shallow subsurface S-wave velocity structure in urban area based on inversion of apparent dispersion curve. J. Geophys. Eng. 2020, 17, 940–955. [Google Scholar] [CrossRef]
- Sanchez-Sesma, F.J. Retrieval of the Green’s Function from Cross Correlation: The Canonical Elastic Problem. Bull. Seismol. Soc. Am. 2006, 96, 1182–1191. [Google Scholar] [CrossRef]
- Dai, w.; Pan, L.; Wang, J.; Yang, Z.; Chen, X. Application of frequency-Bessel transform method in shallow exploration of the beach of Chaohu lake. Comput. Tech. Geophys. Geochem. Explor. 2021, 43, 290–295. [Google Scholar]
- Yang, Z.; Chen, X.; Pan, L.; Wang, J.; XU, J.; Zhang, D. Multi-channel analysis of Rayleigh waves based on the Vector Wavenumber Tansform Method (VWTM). Chin. J. Geophys. 2019, 62, 298–305. [Google Scholar]
- Li, X.; Chen, X.; Yang, Z.; Wang, B.; Yang, B. Application of hingher-order surface waves in shallow exploration: An example of the Suzhou river. Chin. J. Geophys. 2020, 63, 247–255. [Google Scholar]
- Zhan, W.; Pan, L.; Chen, X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise. J. Asian Earth Sci. 2020, 196, 104372. [Google Scholar] [CrossRef]
- Xi, C.; Xia, J.; Mi, B.; Dai, T.; Liu, Y.; Ning, L. Modified frequency–Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise. Geophys. J. Int. 2021, 225, 1271–1280. [Google Scholar] [CrossRef]
- Bensen, G.D.; Ritzwoller, M.H.; Barmin, M.P.; Levshin, A.L.; Lin, F.; Moschetti, M.P.; Shapiro, N.M.; Yang, Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 2007, 169, 1239–1260. [Google Scholar] [CrossRef]
- Luo, Y.; Xia, J.; Liu, J.; Liu, Q. Joint inversion of fundamental and higher mode Rayleigh waves. Chin. J. Geophys. 2008, 51, 242–249. [Google Scholar]
- Xia, J.; Miller, R.D.; Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 1999, 56, 691–700. [Google Scholar] [CrossRef]
- Shao, G.; Li, Q.; Wu, H. Dispersion curves and mode energy distribution of Rayleigh wave based on wavefield numerical simulation. Oil Geophys. Prospect. 2015, 50, 306–315. [Google Scholar] [CrossRef]
- Wu, H.; Chen, X.; Pan, L. S-wave velocity imaging of the Kanto basin in Japan using the frequency-Bessel transformation method. Chin. J. Geophys. 2019, 62, 3400–3407. [Google Scholar]
- Wu, G.x.; Pan, L.; Wang, J.n.; Chen, X. Shear Velocity Inversion Using Multimodal Dispersion Curves From Ambient Seismic Noise Data of USArray Transportable Array. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018213. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, J.; Wu, G.; Wang, J.; Zhang, G.; Dong, S.; Pan, L.; Yang, Z.; Gao, L.; Ma, Q.; et al. CC-FJpy: A Python Package for Extracting Overtone Surface-Wave Dispersion from Seismic Ambient-Noise Cross Correlation. Seismol. Res. Lett. 2021, 92, 3179–3186. [Google Scholar] [CrossRef]
- Tang, T.; Xiao, X.; Li, Q. The application of transient Rayleigh wave to detecting Railway karst disaster. Chin. J. Eng. Geophys. 2019, 16, 339–350. [Google Scholar]
- Yang, Y.; Zhu, D. Application of multi-channel surface wave method based on CMPCC processing technology in karst exploration. Chin. J. Eng. Geophys. 2020, 17, 559–566. [Google Scholar]
- Liu, D.; Xu, J.; Liu, L.; He, J.; Qi, X.; Chen, S. Application of the integrated geophysical methods in the fine exploration of karst collapses: A case study of Wuhan City. Geol. Explor. 2022, 58, 865–874. [Google Scholar]
- He, J.; Liu, L.; Li, Q.; Liu, D.; Chen, B.; Zhang, A.; Zhao, Y. Techniques for detecting underground space in hidden karst region: Taking Wuhan as an example. Hydrogeol. Eng. Geol. 2020, 47, 47–56. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Zhang, W. Applied analysis of ground penetrating radar in Wuhan karst prospecting. Coal Geol. China 2019, 31, 108–112. [Google Scholar]
Layer No | Depth (m) | P-Wave Velocity (m/s) | S-Wave Velocity (m/s) | Density (g/cm3) |
---|---|---|---|---|
1 | 0 | 225 | 130 | 1.72 |
2 | 4 | 450 | 260 | 1.91 |
3 | 10 | 658 | 380 | 1.97 |
4 | 27 | 1593 | 920 | 2.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Liu, D.; Cheng, F.; Xu, J. Multi-Mode Imaging of Ambient Background Noise for Karst Detection in the Limestone Area Based on Frequency-Bessel Transform. Appl. Sci. 2023, 13, 5135. https://doi.org/10.3390/app13085135
Chen S, Liu D, Cheng F, Xu J. Multi-Mode Imaging of Ambient Background Noise for Karst Detection in the Limestone Area Based on Frequency-Bessel Transform. Applied Sciences. 2023; 13(8):5135. https://doi.org/10.3390/app13085135
Chicago/Turabian StyleChen, Song, Daohan Liu, Fei Cheng, and Junjie Xu. 2023. "Multi-Mode Imaging of Ambient Background Noise for Karst Detection in the Limestone Area Based on Frequency-Bessel Transform" Applied Sciences 13, no. 8: 5135. https://doi.org/10.3390/app13085135
APA StyleChen, S., Liu, D., Cheng, F., & Xu, J. (2023). Multi-Mode Imaging of Ambient Background Noise for Karst Detection in the Limestone Area Based on Frequency-Bessel Transform. Applied Sciences, 13(8), 5135. https://doi.org/10.3390/app13085135