Laboratory Investigation of the Composite Influence of Rock Asphalt and Montmorillonite on the Performance of Bio-Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Bio-Oil
2.1.3. Buton Rock Asphalt
2.1.4. Montmorillonite
2.1.5. Preparation of Rock Asphalt and Montmorillonite Composite-Modified Bio-Asphalt (RAMB)
2.1.6. Proportion Optimization of RAMB
2.2. Methods
2.2.1. Dynamic Shear Rheological Test (DSR)
Frequency Scanning Test (FS)
Multiple Stress Creep Recovery Test (MSCR)
2.2.2. Bending Beam Rheological Test (BBR)
2.2.3. Aging of Asphalt
2.2.4. Fourier Transform Infrared Spectroscopy Test (FTIR)
3. Results
3.1. Rheological Properties
3.1.1. High-Temperature Rheological Properties
FS
MSCR
3.1.2. Low-Temperature Rheological Test
3.2. Anti-Aging Performance
3.2.1. Anti-Aging Performance of RAMB Based on High-Temperature Rheological Performance
3.2.2. Anti-Aging Performance of RAMB Based on Low-Temperature Rheological Performance
3.3. FTIR
4. Conclusions
- (1)
- Through the method in the paper, the high-temperature performance of bio-asphalt is significantly improved. The low-temperature cracking resistance can meet the requirements of SHRP for low-temperature performance of asphalt binder.
- (2)
- The anti-aging performance of RAMB is much better than that of bio-asphalt. The distilled water treatment removes some light components in bio-oil and the addition of rock asphalt and montmorillonite increases the absorption peaks of two functional groups, C-H and Si-O-Si, respectively.
- (3)
- Based on the results of FTIR, the mixing of rock asphalt, montmorillonite and bio-asphalt is a physical blending system. The modification effect and road performance of this mixture still need further experimental research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Ma, Z.; Chen, X.; Mohd Hasan, M.R. Preparation process of bio-oil and bio-asphalt, their performance, and the application of bio-asphalt: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 137–151. [Google Scholar] [CrossRef]
- Ren, K.; Liu, C.; Wu, Z.; An, H.; Qu, J.; Zhang, H.; Lv, S. Laboratory investigation on performance of waste-oil cutback asphalt as prime coat on cement stabilized macadam base. Constr. Build. Mater. 2023, 365, 129965. [Google Scholar] [CrossRef]
- Barzegari, S.; Solaimanian, M. Rheological behavior of bio-asphalts and effect of rejuvenators. Constr. Build. Mater. 2020, 251, 118137. [Google Scholar] [CrossRef]
- Liu, J.; Lv, S.; Peng, X.; Yang, S. Improvements on performance of bio-asphalt modified by castor oil-based polyurethane: An efficient approach for bio-oil utilization. Constr. Build. Mater. 2021, 305, 124784. [Google Scholar] [CrossRef]
- Lv, S.; Yuan, J.; Peng, X.; Borges Cabrera, M.; Guo, S.; Luo, X.; Gao, J. Performance and optimization of bio-oil/Buton rock asphalt composite modified asphalt. Constr. Build. Mater. 2020, 264, 120235. [Google Scholar] [CrossRef]
- Zahoor, M.; Nizamuddin, S.; Madapusi, S.; Giustozzi, F. Sustainable asphalt rejuvenation using waste cooking oil: A comprehensive review. J. Clean. Prod. 2021, 278, 123304. [Google Scholar] [CrossRef]
- Peralta, J.; Raouf, M.A.; Tang, S.; Williams, R.C. Bio-Renewable Asphalt Modifiers and Asphalt Substitutes; Springer: Berlin/Heidelberg, Germany, 2012; pp. 89–115. [Google Scholar]
- Sun, Z.; Yi, J.; Huang, Y.; Feng, D.; Guo, C. Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Constr. Build. Mater. 2016, 102, 496–504. [Google Scholar] [CrossRef]
- Su, N.; Xiao, F.; Wang, J.; Cong, L.; Amirkhanian, S. Productions and applications of bio-asphalts–A review. Constr. Build. Mater. 2018, 183, 578–591. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; You, Z.; Jiang, X.; Yang, X. Optimization of bio-asphalt using bio-oil and distilled water. J. Clean. Prod. 2017, 165, 281–289. [Google Scholar] [CrossRef]
- Yang, X.; Mills-Beale, J.; You, Z. Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt. J. Clean. Prod. 2017, 142, 1837–1847. [Google Scholar] [CrossRef]
- Dong, R.; Liang, W.; Tang, N.; Zhao, M. Study on the components and viscoelasticity of asphalt modified by rubber powder pre-desulfurization of waste edible oil. China J. Hhighway Transp. 2019, 32, 226–234. [Google Scholar]
- Maharaj, R.; Ramjattan-Harry, V.; Mohamed, N. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials. Sci. World J. 2015, 2015, 385013. [Google Scholar] [CrossRef]
- Guarin, A.; Khan, A.; Butt, A.A.; Birgisson, B.; Kringos, N. An extensive laboratory investigation of the use of bio-oil modified bitumen in road construction. Constr. Build. Mater. 2016, 106, 133–139. [Google Scholar] [CrossRef]
- Junfeng, G.; Hainian, W.; Zhanping, Y.; Xi, C.; Xin, J. Evaluation of high temperature performance of bio-asphalt based on MSCR test. J. South China Univ. Technol. (Nat. Sci. Ed.) 2017, 45, 24–30. [Google Scholar]
- Yang, X.; You, Z.; Dai, Q.; Mills-Beale, J. Mechanical performance of asphalt mixtures modified by bio-oils derived from waste wood resources. Constr. Build. Mater. 2014, 51, 424–431. [Google Scholar] [CrossRef]
- Sun, Z.; Yi, J.; Chen, Z.; Xie, S.; Xu, M.; Feng, D. Chemical and rheological properties of polymer modified bitumen incorporating bio-oil derived from waste cooking oil. Mater. Struct. 2019, 52, 106. [Google Scholar] [CrossRef]
- Lv, S.; Fan, X.; Yao, H.; You, L.; You, Z.; Fan, G. Analysis of performance and mechanism of Buton rock asphalt modified asphalt. J. Appl. Polym. Sci. 2019, 136, 46903. [Google Scholar] [CrossRef]
- Lv, S.; Peng, X.; Liu, C.; Qu, F.; Zhu, X.; Tian, W.; Zheng, J. Aging resistance evaluation of asphalt modified by Buton-rock asphalt and bio-oil based on the rheological and microscopic characteristics. J. Clean. Prod. 2020, 257, 120589. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.H.; Yang, X.R.; Zhang, A.S.; Yu, M. Monte Carlo Simulations of Deformation Behaviour of Unbound Granular Materials Based on a Real Aggregate Library. Int. J. Pavement Eng. 2023, 24, 2165650. [Google Scholar] [CrossRef]
- Zeng, M.; Zhu, W.; Xia, Y.; Li, J. Performance of Bio-asphalt and Rock Asphalt Composite Modified Asphalt. J. Hunan Univ. Nat. Sci. 2019, 46, 124–131. [Google Scholar] [CrossRef]
- Yu, J.; Zeng, X.; Wu, S.; Wang, L.; Liu, G. Preparation and properties of montmorillonite modified asphalts. Mater. Sci. Eng. A 2007, 447, 233–238. [Google Scholar] [CrossRef]
- Vargas, M.A.; Moreno, L.; Montiel, R.; Manero, O.; Vázquez, H. Effects of montmorillonite (Mt) and two different organo-Mt additives on the performance of asphalt. Appl. Clay Sci. 2017, 139, 20–27. [Google Scholar] [CrossRef]
- Ye, F.; Yin, W.; Lu, H.; Dong, Y. Property improvement of Nano-Montmorillonite/SBS modified asphalt binder by naphthenic oil. Constr. Build. Mater. 2020, 243, 118200. [Google Scholar] [CrossRef]
- Lu, H.; Ye, F.; Yuan, J.; Yin, W. Properties comparison and mechanism analysis of naphthenic oil/SBS and nano-MMT/SBS modified asphalt. Constr. Build. Mater. 2018, 187, 1147–1157. [Google Scholar] [CrossRef]
- Liu, S. Preparation and Characterization of Waste Edible Oil-Based Bio-Asphalt. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2018. [Google Scholar]
- JTG E20-2011; Test Specification for Asphalt and Asphalt Mixture of Highway, Engineering; Transport Industry, Standard. Institute of Highway Science, M.o.T: Beijing, China, 2011; p. 373P.; A374.
- JTG F40-2004; Technical Specification for Construction of Highway Asphalt Pavement. Institute of Highway Science, M.o.T: Beijing, China, 2004; p. 196P.; A194.
- Sheng, Y.; Wu, Y.; Yan, Y.; Jia, H.; Qiao, Y.; Underwood, B.S.; Niu, D.; Kim, Y.R. Development of environmentally friendly flame retardant to achieve low flammability for asphalt binder used in tunnel pavements. J. Clean. Prod. 2020, 257, 120487. [Google Scholar] [CrossRef]
- Zhang, Y. Research and Application of Multi-Objective Decision Making under Uncertainty Method. Master’s Thesis, Yangtze University, Jingzhou, China, 2018. [Google Scholar]
- Azahar, W.N.A.W.; Jaya, R.P.; Hainin, M.R.; Bujang, M.; Ngadi, N. Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. Constr. Build. Mater. 2011, 126, 218–226. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, B.; Xue, Y.; He, Y.; Ding, S.; Wen, Y.; Lv, S. Synchronous method and mechanism of asphalt-aggregate separation and regeneration of reclaimed asphalt pavement. Constr. Build. Mater. 2023, 378, 131127. [Google Scholar] [CrossRef]
- Hallizza, A.; Rehan, K.M. Implementition of Waste Cooking Oil as Rap Rejuvenator. Proc. East. Asia Soc. Transp. Studies 2011, 8, 267. [Google Scholar] [CrossRef]
- Puetuen, E.; Puetuen, A.E.; Apaydin, E. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy 2004, 29, 2171–2180. [Google Scholar] [CrossRef]
- Jing, H.; Guopeng, F.; Minjia, Z. Partial performance and economic benefit analysis of Budunyan asphalt modified asphalt. Pet. Asph. 2019, 33, 55–59, 66. [Google Scholar]
- Bee, S.-L.; Abdullah, M.A.A.; Mamat, M.; Bee, S.-T.; Sin, L.T.; Hui, D.; Rahmat, A.R. Characterization of silylated modified clay nanoparticles and its functionality in PMMA. Compos. Part B Eng. 2017, 110, 83–95. [Google Scholar] [CrossRef]
- Mishra, A.K.; Allauddin, S.; Narayan, R.; Aminabhavi, T.M.; Raju, K.V.S.N. Characterization of surface-modified montmorillonite nanocomposites. Ceram. Int. 2012, 38, 929–934. [Google Scholar] [CrossRef]
Project | Unit | Demand | Result | Test Method | |
---|---|---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 60~80 | 67.6 | T 0604-2011 | |
Ductility (10 °C, 5 cm/min) | cm | ≥10 | 13.5 | T 0605-2011 | |
Softening point (ring and ball method) | °C | ≥46 | 48.5 | T 0606-2011 | |
Penetration index | ― | −1.5~+1.0 | −0.78 | T 0604-2011 | |
Density | g/cm3 | Measured | 1.027 | T 0603-2011 | |
60 °C Dynamic viscosity | Pa·s | ≥180 | 272 | T 0620-2000 | |
Flash point | °C | ≥260 | 294 | T 0611-2011 | |
After RTFOT | Mass change rate | % | ±0.8 | −0.083 | T 0610-2011 |
Residual penetration ratio | % | ≥61 | 81 | T 0604-2011 | |
Residual ductility (10 °C) | cm | ≥6 | 7 | T 0605-2011 |
Project | Unit | Index | Test Method |
---|---|---|---|
Density | g/mL | 0.92~0.95 | GB/T 2540 |
Water content | % | ≤0.3 | SH/T 0264 |
60 °C Dynamic viscosity | Pa·s | 0.126 | GB/T 265 |
Acid value | mg KOH/g | 30~60 | SH/T 264 |
Project | Unit | Demand | Result | Test Method |
---|---|---|---|---|
Trichloroethylene Solubility | % | ≥18 | 26.65 | T0607 |
Density | g/cm3 | ≤1.9 | 1.71 | T0603 |
Heating loss | % | ≤2.0 | 0.27 | T0608 |
Flash point | °C | ≥230 | 318 | T0611 |
Project | Unit | Result | Test Method |
---|---|---|---|
Density | g·cm−3 | 1.02 | ASTM D854-14 |
Granularity | Mesh | 5000 | GB/T 2922 |
Coefficient of expansion | / | 0.05 | GB/T 50123-2019 |
Hardness | / | 1.02 | - |
Montmorillonite content | % | >99 | GB/T 17188-2016 |
Specific surface area | m2·g−1 | 750 | - |
Diameter thickness ratio | / | 200 | - |
Level | Factor | |||
---|---|---|---|---|
Mass Ratio of Water and Bio-Oil | Content of Bio-Oil (%) | Content of Rock Asphalt (%) | Content of Montmorillonite (%) | |
1 | 1:1 | 5 | 20 | 3 |
2 | 2:1 | 7 | 30 | 5 |
3 | 3:1 | 9 | 40 | 7 |
Number | Mass Ratio of Water and Bio-Oil | Content of Bio-Oil (%) | Content of Rock Asphalt (%) | Content of Montmorillonite (%) | Orthogonal Combinations |
---|---|---|---|---|---|
1 | 1:1 | 5 | 20 | 3 | A1B1C1 D1 |
2 | 1:1 | 7 | 30 | 5 | A1B2C2 D2 |
3 | 1:1 | 9 | 40 | 7 | A1B3C3 D3 |
4 | 2:1 | 5 | 30 | 7 | A2B1C2 D3 |
5 | 2:1 | 7 | 40 | 3 | A2B2C3 D1 |
6 | 2:1 | 9 | 20 | 5 | A2B3C1 D2 |
7 | 3:1 | 5 | 40 | 5 | A3B1C3 D2 |
8 | 3:1 | 7 | 20 | 7 | A3B2C1 D3 |
9 | 3:1 | 9 | 30 | 3 | A3B3C2 D1 |
Combinations | Penetration (0.1 mm) | Softening Point (°C) | Ductility at 10 °C (mm) | Rotational Viscosity at 135 °C (Pa·s) |
---|---|---|---|---|
1 | 59.47 | 52.2 | 116.5 | 0.690 |
2 | 63.77 | 50.6 | 152.8 | 0.805 |
3 | 62.4 | 51.3 | 101.3 | 0.965 |
4 | 52.63 | 52.7 | 95.5 | 0.955 |
5 | 62.83 | 53.3 | 99.5 | 0.940 |
6 | 95.9 | 47.6 | 304.2 | 0.640 |
7 | 57.23 | 51.4 | 132.1 | 0.935 |
8 | 81.1 | 48.3 | 183.2 | 0.755 |
9 | 83.67 | 47.8 | 288.8 | 0.715 |
Combination | Di+ | Di− | CI | Sort |
---|---|---|---|---|
1 | 0.105575933 | 0.044310354 | 0.29562647 | 4 |
2 | 0.08704551 | 0.047591609 | 0.353480599 | 1 |
3 | 0.114158233 | 0.03963836 | 0.257732365 | 5 |
4 | 0.115642707 | 0.058291842 | 0.335136648 | 3 |
5 | 0.115200269 | 0.039523716 | 0.255446599 | 6 |
7 | 0.058596286 | 0.115635936 | 0.352389578 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, M.; Liu, C.; Liu, Z. Laboratory Investigation of the Composite Influence of Rock Asphalt and Montmorillonite on the Performance of Bio-Asphalt. Appl. Sci. 2023, 13, 5174. https://doi.org/10.3390/app13085174
Mu M, Liu C, Liu Z. Laboratory Investigation of the Composite Influence of Rock Asphalt and Montmorillonite on the Performance of Bio-Asphalt. Applied Sciences. 2023; 13(8):5174. https://doi.org/10.3390/app13085174
Chicago/Turabian StyleMu, Minghao, Chaochao Liu, and Zhengnan Liu. 2023. "Laboratory Investigation of the Composite Influence of Rock Asphalt and Montmorillonite on the Performance of Bio-Asphalt" Applied Sciences 13, no. 8: 5174. https://doi.org/10.3390/app13085174
APA StyleMu, M., Liu, C., & Liu, Z. (2023). Laboratory Investigation of the Composite Influence of Rock Asphalt and Montmorillonite on the Performance of Bio-Asphalt. Applied Sciences, 13(8), 5174. https://doi.org/10.3390/app13085174