Non-Compliance Distalization Appliances Supported by Mini-Implants: A Systematic Review
Abstract
:1. Introduction
1.1. Background
1.2. Aim
2. Materials and Methods
2.1. Protocol and Registration
2.2. Literature Search
2.3. Eligibility Criteria
- ▪
- Prospective or retrospective studies
- ▪
- Non-compliance maxillary molar distalization appliances supported by MIs for the management of Class II malocclusion
- ▪
- Non-compliance maxillary molar distalization appliances anchored on permanent dentition for bilateral maxillary molar distalization with the presence of the 2nd molars
- ▪
- Sample size: 10 patients minimum
- ▪
- Treatment duration: 12 months maximum
2.4. Study Selection
2.5. Data Collection and Data Items
2.6. Risk of Bias
3. Results
3.1. Study Selection
3.2. Risk of Bias within Studies
3.3. Study Characteristics
4. Discussion
4.1. Angular and Linear Molar Distalization Movement
4.1.1. Characteristics of the Appliances Positioned Palatally
4.1.2. Characteristics of the Appliances Positioned Buccally
4.2. One MI vs. Two MIs on Molar Distalization
4.3. MI Placement in Palate vs. in Interradicular Area
4.4. Anchorage Loss
4.5. Limitations
5. Conclusions
- Non-compliance appliances supported by mini-implants are effective in maxillary molar distalization, presenting no anchorage loss of the anterior dental unit in most of the appliances besides the MGBM, which presented anchorage loss of the first premolars and in proclination of the anterior dental unit.
- Distal tipping of the maxillary molars was found to be more pronounced when the mini-implants were used with Pendulums or when they were inserted in the buccal sides.
- The use of two mini-implants for the anchorage instead of one mini-implant to support maxillary molar distalization seems to be more effective.
- Due to the lack of high-quality studies and the large heterogeneity, the results of this review should be considered with some caution while additional high-quality, well-designed prospective clinical trials are needed to ascertain the impact of various designs on distalization.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bondemark, L.; Karlsson, I. Extraoral vs Intraoral Appliance for Distal Movement of Maxillary First Molars: A randomized controlled trial. Angle Orthod. 2005, 75, 699. [Google Scholar] [PubMed]
- Papadopoulos, M.A.; Melkos, A.B.; Athanasiou, A.E. Noncompliance maxillary molar distalization with the First-Class appliance: A randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 586. [Google Scholar] [CrossRef]
- Burhan, A.S. Combined treatment with headgear and the Frog appliance for maxillary molar distalization: A randomized controlled trial. Korean J. Orthod. 2013, 43, 101. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, M.A. (Ed.) Orthodontic Treatment for the Class II Non-Compliant Patient: Current Principles and Techniques; Elsevier; Mosby: Edinburgh, UK, 2006. [Google Scholar]
- Zymperdikas, V.; Papadopoulos, M.A. Contemporary applications of orthodontic miniscrew implants for the treatment of Class II malocclusion. Hell Orthod. Rev. 2012, 15, 15. [Google Scholar]
- Sugawara, J.; Kanzaki, R.; Takahashi, I.; Nagasaka, H.; Nanda, R. Distal movement of maxillary molars in nongrowing patients with the skeletal anchorage system. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 723. [Google Scholar] [CrossRef]
- Gelgor, I.E.; Buyukyilmaz, T.; Karaman, A.I.; Dolanmaz, D.; Kalayci, A. Intraosseous screw-supported upper molar distalization. Angle Orthod. 2004, 74, 838. [Google Scholar] [PubMed]
- Park, H.S.; Lee, S.K.; Kwon, O.W. Group distal movement of teeth using microscrew implant anchorage. Angle Orthod. 2005, 75, 510. [Google Scholar]
- Oncag, G.; Akyalcin, S.; Arikan, F. The effectiveness of a single osseointegrated implant combined with pendulum springs for molar distalization. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 277. [Google Scholar] [CrossRef]
- Kircelli, B.H.; Pektas, Z.O.; Kircelli, G. Maxillary molar distalization with a bone-anchored pendulum appliance. Angle Orthod. 2006, 76, 650. [Google Scholar]
- Papadopoulos, M.A.; Tarawneh, F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: A comprehensive review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, 6. [Google Scholar] [CrossRef]
- Eliades, T.; Zinelis, S.; Papadopoulos, M.A.; Eliades, G. Characterization of retrieved orthodontic miniscrew implants. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 10. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0, Updated March 2011. The Cochrane Collaboration. Available online: http://handbook.cochrane.org (accessed on 11 November 2022).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Br. Med. J. 2009, 339, b2535. [Google Scholar] [CrossRef]
- Escobar, S.A.; Tellez, P.A.; Moncada, C.A.; Villegas, C.A.; Latorre, C.M.; Oberti, G. Distalization of maxillary molars with the bone-supported pendulum: A clinical study. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 545. [Google Scholar] [CrossRef] [PubMed]
- Gelgor, I.E.; Karaman, A.I.; Buyukyilmaz, T. Comparison of 2 distalization systems supported by intraosseous screws. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 161. [Google Scholar] [CrossRef] [PubMed]
- Oberti, G.; Villegas, C.; Ealo, M.; Palacio, J.C.; Baccetti, T. Maxillary molar distalization with the dual-force distalizer supported by mini-implants: A clinical study. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 282. [Google Scholar] [CrossRef] [PubMed]
- Polat-Ozsoy, O. The use of intraosseous screw for upper molar distalization: A case report. Eur. J. Dent. 2008, 2, 115. [Google Scholar] [CrossRef]
- Kinzinger, G.S.; Gulden, N.; Yildizhan, F.; Diedrich, P.R. Efficiency of a skeletonized distal jet appliance supported by miniscrew anchorage for noncompliance maxillary molar distalization. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 578. [Google Scholar] [CrossRef]
- Yamada, K.; Kuroda, S.; Deguchi, T.; Takano-Yamamoto, T.; Yamashiro, T. Distal movement of maxillary molars using miniscrew anchorage in the buccal interradicular region. Angle Orthod. 2009, 79, 78. [Google Scholar] [CrossRef]
- Wilmes, B.; Drescher, D. Application and effectiveness of the Beneslider: A device to move molars distally. World J. Orthod. 2010, 11, 331. [Google Scholar]
- Gómez, S.L.; Betancur, J.J.; Arismendi, J.A.; Gil, J.H. Clinical and radiographic comparison of the pendulum effect with skeletal anchorage versus dentoalveolar anchorage. Rev. Fac. Odontol. Univ. Antioq. 2012, 23, 268. [Google Scholar]
- Sar, C.; Kaya, B.; Ozsoy, O.; Ozcirpici, A.A. Comparison of two implant-supported molar distalization systems. Angle Orthod. 2013, 83, 460. [Google Scholar] [CrossRef]
- Bechtold, T.E.; Kim, J.W.; Choi, T.H.; Park, Y.C.; Lee, K.J. Distalization pattern of the maxillary arch depending on the number of orthodontic miniscrews. Angle Orthod. 2013, 83, 266. [Google Scholar] [CrossRef] [PubMed]
- Mariani, L.; Maino, G.; Caprioglio, A. Skeletal versus conventional intraoral anchorage for the treatment of Class II malocclusion: Dentoalveolar and skeletal effects. Prog. Orthod. 2014, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Cozanni, M.; Pasini, M.; Zallio, F.; Ritucci, R.; Mainelli, S.; Mazzotta, L.; Giuca, M.R.; Piras, V. Comparison of maxillary molar distalization with an implant-supported distal jet and a traditional tooth-supported distal jet appliance. Int. J. Dent. 2014, 2014, 937059. [Google Scholar] [CrossRef] [PubMed]
- Nienkemper, M.; Wilmes, B.; Pauls, A.; Yamaguchi, S.; Ludwig, B.; Drescher, D. Treatment efficiency of mini-implant-borne distalization depending on age and second-molar eruption. J. Orofac. Orthop. 2014, 75, 118. [Google Scholar] [CrossRef] [PubMed]
- Caprioglio, A.; Cafagna, A.; Fontana, M.; Cozzani, M. Comparative evaluation of molar distalization therapy using pendulum and distal screw appliances. Korean J. Orthod. 2015, 45, 171. [Google Scholar] [CrossRef]
- Duran, G.S.; Gorgulu, S.; Dindaroglu, F. Three-dimensional analysis of tooth movements after palatal miniscrew-supported molar distalization. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 188. [Google Scholar] [CrossRef]
- Cozzani, M.; Fontana, M.; Maino, G.; Maino, G.; Palpacelli, L.; Caprioglio, A. Comparison between direct vs indirect anchorage in two miniscrew-supported distalizing devices. Angle Orthod. 2016, 86, 399. [Google Scholar] [CrossRef]
- Mah, S.J.; Kim, J.E.; Ahn, E.J.; Nam, J.H.; Kim, J.Y.; Kang, Y.G. Analysis of midpalatal miniscrew-assisted maxillary molar distalization patterns with simultaneous use of fixed appliances: A preliminary study. Korean J. Orthod. 2016, 46, 55. [Google Scholar] [CrossRef]
- Cambiano, A.O.; Janson, G.; Fuziy, A.; Garib, D.G.; Lorenzoni, D.C. Changes consequent to maxillary molar distalization with the bone-anchored pendulum appliance. J. Orthod. Sci. 2017, 6, 141. [Google Scholar] [CrossRef]
- Farag, M.A.; El-Shakhawy, M.; El-Shennawy, M.E.; El-Mehy, G. Comparison between bone supported-pendulum appliance and lever-arm mini-implant system in maxillary molar distalization in Class II malocclusion. Egypt. Dent. J. 2018, 64, 3047. [Google Scholar] [CrossRef]
- Cassetta, M.; Brandetti, G.; Altieri, F. Miniscrew-supported distal jet versus conventional distal jet appliance: A pilot study. J. Clin. Exp. Dent. 2019, 1, 11. [Google Scholar] [CrossRef]
- Bechtold, T.E.; Park, Y.C.; Kim, K.H.; Jung, H.; Kang, J.Y.; Choi, Y.J. Long-term stability of miniscrew anchored maxillary molar distalization in Class II treatment. Angle Orthod. 2020, 90, 362. [Google Scholar] [CrossRef] [PubMed]
- Bozkaya, E.; Tortop, T.; Yüksel, S.; Kaygısız, E. Evaluation of the effects of the hybrid Pendulum in comparison with the conventional Pendulum appliance. Angle Orthod. 2020, 90, 194. [Google Scholar] [CrossRef] [PubMed]
- Abdelhady, N.A.; Tawfik, M.A.; Hammad, S.M. Maxillary molar distalization in treatment of angle Class II malocclusion growing patients: Uncontrolled clinical trial. Int. Orthod. 2020, 18, 96. [Google Scholar] [CrossRef]
- Negm, I.M.; Iskander, R.A.; Aboulazm, K. Three-dimensional assessment of skeletal frog appliance outcomes via cone beam computerized tomography. Egypt. Orthod. J. 2021, 59, 13. [Google Scholar] [CrossRef]
- Altieri, F.; Mezio, M.; Guarnieri, R.; Cassetta, M. Comparing Distal-Jet with Dental Anchorage to Distal-Jet with Skeletal Anchorage: A Prospective Parallel Cohort Study. Dent. J. 2022, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Nunes Rosa, W.G.; de Almeida-Pedrin, R.R.; Oltramari, P.V.P.; de Castro Conti, A.C.F.; Fernandes Poleti, T.M.F.; Shroff, B.; de Almeida, M.R. Total arch maxillary distalization using infrazygomatic crest miniscrews in the treatment of Class II malocclusion: A prospective study. Angle Orthod. 2022, 93, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Haydar, S.; Uner, O. Comparison of Jones jig molar distalization appliance with extraoral traction. Am. J. Orthod. Dentofac. Orthop. 2000, 117, 49. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.W.; Sarver, D.M. Contemporary Orthodontics, 4th ed.; Mosby: St. Louis, MO, USA, 2007. [Google Scholar]
- Papadopoulos, M.A. The Influence of Orthodontic and Orthopedic Treatment on Maxillary and Mandibular Growth Processes of Skeletal Class II Malocclusions. Ph.D. Thesis, University of Freiburg, Freiburg, Germany, 1988. [Google Scholar]
- Papadopoulos, M.A. (Ed.) Non-Compliance Distalization: A Monograph on the Clinical Management and Effectiveness of a Jig Assembly in Class II Malocclusion Orthodontic Treatment; Phototypotiki Publications: Thessaloniki, Greece, 2005. [Google Scholar]
- Papadopoulos, M.A. (Ed.) Skeletal Anchorage in Orthodontic Treatment of Class II Malocclusion; Elsevier, Mosby: Edinburgh, UK, 2015. [Google Scholar]
- Papadopoulos, M.A.; Papageorgiou, S.N.; Zogakis, I.P. Clinical effectiveness of orthodontic miniscrew implants: A meta-analysis. J. Dent. Res. 2011, 90, 969. [Google Scholar] [CrossRef]
- Keles, A.; Erverdi, N.; Sezen, S. Bodily distalization of molars with absolute anchorage. Angle Orthod. 2003, 73, 471. [Google Scholar]
- Karaman, A.I.; Basciftci, F.A.; Polat, O. Unilateral distal molar movement with an implant-supported distal jet appliance. Angle Orthod. 2002, 72, 167. [Google Scholar] [PubMed]
- Kyung, S.H.; Hong, S.G.; Park, Y.C. Distalization of maxillary molars with a midpalatal miniscrew. J. Clin. Orthod. 2003, 37, 22. [Google Scholar] [PubMed]
- Kinzinger, G.S.; Wehrbein, H.; Byloff, F.K.; Yildizhan, F.; Diedrich, P. Innovative anchorage alternatives for molar distalization: An overview. J. Orofac. Orthop. 2005, 66, 397. [Google Scholar] [CrossRef]
- Kinzinger, G.S.; Diedrich, P.R.; Bowman, S.J. Upper molar distalization with a miniscrew-supported Distal Jet. J. Clin. Orthod. 2006, 40, 672. [Google Scholar]
- Cozzani, M.; Gracco, A.; Lombardo, L.; Siciliani, G. Why, when and how distalizing maxillary molars. Ortognatod. Ital. 2007, 14, 21. [Google Scholar]
- Cozzani, M.; Zallio, F.; Lombardo, L.; Gracco, A. Efficiency of the distal screw in the distal movement of maxillary molars. World J. Orthod. 2010, 11, 341. [Google Scholar] [PubMed]
- Papadopoulos, M.A. The “Advanced Molar Distalization Appliance”: A novel approach to correct Class II malocclusion. Recent Pat. Biomed. Eng. 2010, 3, 6. [Google Scholar] [CrossRef]
- Maino, B.G.; Gianelly, A.A.; Bednar, J.; Mura, P.; Maino, G. MGBM system: New protocol for Class II non extraction treatment without cooperation. Prog. Orthod. 2007, 8, 130. [Google Scholar] [PubMed]
- Maino, B.G.; Mariani, L.; Bozzo, I.; Maino, G.; Caprioglio, A. Maxillary molar distalization with MGBM-system in Class II malocclusion. J. Orthod. Sci. 2013, 2, 101. [Google Scholar]
- Mohamed, R.N.; Basha, S.; Al-Thomali, Y. Maxillary molar distalization with miniscrew-supported appliances in Class II malocclusion: A systematic review. Angle Orthod. 2018, 88, 494. [Google Scholar] [CrossRef] [PubMed]
- Bayome, M.; Park, J.H.; Bay, C.; Kook, Y.A. Distalization of maxillary molars using temporary skeletal anchorage devices: A systematic review and meta-analysis. Orthod. Craniofac Res. 2021, 1, 103–112. [Google Scholar] [CrossRef] [PubMed]
Publication Year/Authors | Distalization Appliance | Number of Cases | Starting Age (Years) | Treatment Time (Months) | Reference Plane | First Molar Distalization (mm) | First Molar Tipping (°) | Second Molar Distalization (mm) | Second Molar Tipping (°) | MDM in mm (SD) | MI Dimension Diameter/Length (mm) | Skeletal Anchorage Site | Distalization Force Applied |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 Gelgor et al. [7] | Intraosseous screw | 25 (18F, 7M) | 11.3 | 4.6 | SN/ACP | 3.9 mm | 8.8° | NA | NA | 3.9 (1.61) | 1.8/14 | Paramedian Palate | 250 g/2 |
2006 Kirceli et al. [10] | BAPA | 10 (9F, 1M) | 13.5 | 7.0 | FH/PVT | 6.4 mm | 10.9° | NA | NA | 6.4 (1.3) | 2/8 | Paramedian Palate | NA |
2007 Escobar et al. [15] | BSP | 15 (6F, 9M) | 13 | 7.8 | SN/GOMe | 6 mm | 11.3° | NA | NA | 6 (2.27) | 2/11 | Paramedian Palate | 250 g/2 |
2007 Gelgor et al. [16] | VFV PFV | 20 (8F, 12M) 20 (11F, 9M) | 11.6 12.3 | 4.6 5.4 | SN/ACP | 3.95 mm 3.88 mm | 9.05° 0.75° | NA | NA | 3.95 (1.68) 3.88 (1.47) | 1.8/14 | Paramedian Palate | 250 g/2 |
2007 Oberti et al. [17] | DFD | 16 (4F, 12M) | 14.3 | 5 | SN/GoMe | 5.9 mm | 5.6° | NA | NA | 5.9 (1.72) | 2/11 | Paramedian Palate | 250–300 g/2 |
2008 Polat-Oszoy et al. [18] | BAPA CPA | 22 (15F, 7M) 17 (10F, 7M) | 13.61 13.62 | 6.8 5.1 | SN/MP | 4.8 mm 2.7 mm | 9.1° 5.3° | 3.3 mm 2.7 mm | 9.5° 5.5° | 4.8 (1.8) 2.7 (1.7) | 2/8 | Paramedian Palate | 230 g/2 |
2009 Kinzinger et al. [19] | SDJ | 10 (8F, 2M) | 12.1 | 6.7 | SN/ANS-PNS | 3.92 mm | 2.79° | NA | NA | 3.92 (0.53) | 1.6/8–9 | Paramedian Palate | 200 cN/2 |
2009 Yamada et al. [20] | Miniscrew | 12 (11F, 1M) | 28.2 | 8.4 | NA | 2.8 mm | 4.8° | NA | NA | 2.8 (1.6) | 1.3–1.5/8 | Interradicular Buccal between IIPM and IM | 200 g |
2010 Wilmes & Drescher [21] | Beneslider | 18 (10F, 8M) | G1 12.4 G2 35.2 | 6–10 | NA | 4.6 mm | 1.9° | NA | NA | 4.6 (1.5) | Spider screw 2.0/11 Benefit 2.0/9–11—anterior 2.0/7–9—posterior | Median Palate | NA |
2012 Gomez et al. [22] | BPA PA | 9 10 | 17.5 13 | 6 6 | NA | 3.56 mm 3.6 mm | 7.34° 14.1° | NA | NA | 3.56 (0.91) 3.6 (1.05) | 2.0/11 | Paramedian Palate | 250 g |
2013 Sar et al. [23] | MISDS BAPA | 14 (8F, 6M) 14 (9F, 5M) | 14.8 14.5 | 8.2 10.2 | SN/PTV | 2.8 mm 2.93 mm | 1.65° 9° | NA | NA | 2.81 (2.70) 2.93 (1.74) | 2/8 | Paramedian Palate | 230 g/2 |
2013 Bechtold et al. [24] | MIs GroupA (1 MI) GroupB (2 MIs) | A = 12 (11F, 1M) B = 13 (11F, 2M) | 23.58 22.92 | 9.08 11.27 | SN/ANS-PNS | 1.83 mm 2.91 mm | 3.19° 1.55° | NA | NA | 1.83 (1.23) 2.91 (0.96) | 1.8/7 | Interradicular Buccal, between IPM and IIPM | 200 g 400 g |
2014 Mariani et al. [25] | MGBM CPA | 30 27 | 13.3 12.8 | 7 9 | SN/PTV | 4.9 mm 2.5 mm | 10.5° 10.3° | 4 mm 2.9 mm | 10.1° 9° | 4.9 (3.1) 2.5 (2.1) | 1.5/10 | Interradicular Palatal, between IIPM and IM | 200 cN/2 |
2014 Cozzani et al. [26] | DS DJ | 18 (10F, 8M) 18 (8F, 10M) | 11.5 11.2 | 9.1 10.5 | SN/PTV | 4.7 mm 4.4 mm | 2.8° 5° | NA | NA | 4.7 (1.6) 4.4 (2.5) | 1.5/11 | Paramedian Palate | 240 cN/2 |
2014 Nienkemper et al. [27] | Beneslider | 51 (30F, 21M) | 17.8 | 7.5 | ANS/PNS | G1 3.6 mm G2 3.7 mm G3 3.3 mm | G1 4.3° G2 4.1° G2 2.9° | G2 2.7 mm G3 2 mm | G2 4.1° G3 2.2° | 3.6 (1.9) | 2.0/11—anterior 2.0/9—posterior | Median Palate | G1 2.4 N G2 5.0 N G3 5.0 N |
2015 Caprioglio et al. [28] | PA DS | 24 (14F, 10M) 19 (10F, 9M) | 12.2 11.3 | 7 9 | SN/PTV | 4.7 mm 4.2 mm | 9° 3.2° | 4 mm 3.9 mm | 10.2° 5.2° | 4.7 (2.0) 4.2 (1.4) | 2.2/11 | Paramedian Palate | 230–240 g/2 |
2016 Duran et al. [29] | HyraxScrew | 21 (9F, 12M) | 13.6 | 5.3 | CT/FA | 4.10 mm | 11.0° | 3.30 mm | 9.06° | 4.10 (1.57) | 1.7/8 | Paramedian Palate | NA |
2016 Cozzani et al. [30] | MGBM DS | 29 (13F, 16M) 24 (13F, 11M) | 12.3 11.3 | 6 9 | ANS-PNS/PTV | 5.2 mm 3.2 mm | 10.3° 3° | NA | NA | 5.2 (6.2) 2.6 (3.2) | 1.5/8–10 1.5–2/11 | Interradicular Palate/Paramedian Palate | NA |
2016 Mah et al. [31] | LA BPA | 7 7 | 19.2 20.9 | NA | NA | 2.4 mm 1.8 mm | 0.8° 1.5° | NA | NA | 2.4 (3.1) 1.8 (1.2) | NA | Median Palate | NA |
2017 Cambiano et al. [32] | BAPA | 18 (14F, 4M) | 14 | 4.8 | SN/PP | 3.45 mm | 11.2° | 3 mm | 12.62° | 3.45 (2.61) | 2.4/14 | Paramedian Palate | 250 g |
2018 Farag et al. [33] | BAPA LAMS | 15 15 | 16 | 7.2 10.56 | FH/PTV | 7.9 mm 7.1 mm | 22.8° 10.9° | NA | NA | 7.9 (0.35) 7.1 (0.34) | 1.8/8 1.8/8 | Paramedian Palate Median Palate and Interradicular between IIPM and IM | 300 g NA |
2019 Cassetta et al. [34] | SDJ CA | 10 10 | 13.1 12.3 | 6 6 | SN/PTV | 5.3 mm 0.9 mm | 0.01° 0.6° | NA | NA | 5.2 (2.1) 0.9 (0.9) | NA | Paramedian Palate | 250 N |
2020 Bechtold et al. [35] | VFV | 19 (15F, 4M) | 24.9 | NA | SN/PTV | 4.2 mm | 0.6° | NA | NA | 4.2 (2.0) | NA | Interradicular Buccal, between IIPM and IM | NA |
2020 Bozkaya et al. [36] | HP CP | 22 (14F, 8M) 21 (15F, 6M) | 14.3 14.6 | 7 8.3 | ANS/PNS | 4.25 mm 3.21 mm | 9.09° 9.86° | 3.55 mm 2.86 mm | 8.45° 9.86° | 4.25 (0.95) 3.21 (1.79) | 1.9/9 | Paramedian Palate | NA |
2020 Abdelhady et al. [37] | BDT | 11F | 12.4 | 4.9 | ML | 4.09 mm | 2.48° | NA | NA | 4.09 (0.92) | 1.8/8 | Interradicular Buccal, between IIPM and IM | 250 g |
2021 Negm et al. [38] | SFA | 25 (16F, 9M) | 13 | NA | NA | 4.14 mm | 9.02° | NA | NA | 4.14 (2.14) | 2/6 | Paramedian Palate | 250 g |
2022 Altieri et al. [39] | SDJ DJ | 46 (26F, 20M) | 13.2 | NA | SN/PTV | 4.3 mm 1.3 mm | 0.1° 2.5° | NA | NA | 4.3 (2.8) 1.5 (3.1) | Benefit 2, 2.3/7, 9, 11, 13 | Paramedian Palate | 250 N |
2022 Rosa et al. [40] | IZC miniscrews | 25 (14F, 11M) | 13.6 | 7.7 | ANS/PNS | 4 mm | 11.2° | 3.53 mm | 11.04° | 4 (1.80) | 2/12 | Interradicular Buccal, between IM and IIM | 350 g |
Author/Risk of Bias | Bias due to Confounding | Bias in Selection of Participants | Bias in Classification of Interventions | Bias due to Deviations from Intended Interventions | Bias due to Missing Data | Bias in the Measurement of Outcomes | Bias in the Selection of the Reported Result | The Overall Risk of Bias |
---|---|---|---|---|---|---|---|---|
Gelgor et al. [7] | LOW | MODERATE | LOW | LOW | MODERATE | LOW | LOW | MODERATE |
Kirceli et al. [10] | LOW | MODERATE | LOW | LOW | MODERATE | LOW | MODERATE | MODERATE |
Escobar et al. [15] | LOW | LOW | LOW | LOW | MODERATE | MODERATE | MODERATE | MODERATE |
Gelgor et al. [16] | LOW | MODERATE | LOW | LOW | LOW | LOW | MODERATE | MODERATE |
Oberti et al. [17] | LOW | LOW | LOW | LOW | LOW | LOW | LOW | LOW |
Kinzinger et al. [19] | LOW | MODERATE | LOW | LOW | LOW | LOW | LOW | MODERATE |
Yamada et al. [20] | LOW | MODERATE | LOW | LOW | LOW | LOW | MODERATE | MODERATE |
Sar et al. [23] | LOW | LOW | MODERATE | LOW | LOW | LOW | LOW | MODERATE |
Bechtold et al. [24] | LOW | LOW | SERIOUS | MODERATE | LOW | MODERATE | LOW | SERIOUS |
Cozzani et al. [26] | MODERATE | MODERATE | SERIOUS | LOW | LOW | LOW | LOW | MODERATE |
Duran et al. [29] | LOW | LOW | LOW | LOW | LOW | LOW | LOW | LOW |
Mah et al. [31] | LOW | LOW | LOW | LOW | LOW | LOW | LOW | LOW |
Cassetta et al. [34] | LOW | LOW | LOW | LOW | LOW | LOW | LOW | LOW |
Farag et al. [33] | LOW | LOW | LOW | MODERATE | LOW | MODERATE | MODERATE | MODERATE |
Abdelhady et al. [37] | LOW | LOW | LOW | LOW | LOW | LOW | LOW | LOW |
Negm et al. [38] | LOW | LOW | LOW | LOW | LOW | LOW | LOW | LOW |
Altieri et al. [39] | LOW | LOW | LOW | LOW | LOW | LOW | LOW | LOW |
Rosa et al. [40] | LOW | LOW | LOW | LOW | LOW | LOW | LOW | LOW |
Author/Quality Evaluation | Representativeness of MIs Group | Selection of the Control Group | Ascertainment of MIs Group | Demonstration That the Outcome of Interest Is Not Present at the Start of the Study | Comparability of Participants between Treatment and Control Group | Assessment of Outcome | Adequacy of Follow-up | Lost to Follow-up Acceptable (<10% and Reported) | Total Quality Score |
---|---|---|---|---|---|---|---|---|---|
Polat-Oszoy et al. [18] | * | * | ** | * | * | * | 7 (H) | ||
Gomez et al. [22] | * | * | * | * | * | * | * | 7 (H) | |
Mariani et al. [25] | * | * | * | * | * | * | * | * | 8 (H) |
Nienkemper et al. [27] | * | * | * | * | * | 5 (L) | |||
Wilmes & Drescher [21] | * | * | * | * | * | 5 (L) | |||
Caprioglio et al. [28] | * | * | * | * | ** | * | * | * | 9 (H) |
Cozzani et al. [30] | * | * | * | * | * | * | * | 7 (H) | |
Cambiano et al. [32] | * | * | * | * | * | * | 6 (H) | ||
Betchtold et al. [35] | * | * | * | * | * | * | * | 7 (H) | |
Bozkaya et al. [36] | * | * | * | * | * | * | * | 7 (H) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karvelas, N.; Dragomir, B.R.; Chehab, A.; Panaite, T.; Papadopoulos, M.A.; Zetu, I. Non-Compliance Distalization Appliances Supported by Mini-Implants: A Systematic Review. Appl. Sci. 2023, 13, 5176. https://doi.org/10.3390/app13085176
Karvelas N, Dragomir BR, Chehab A, Panaite T, Papadopoulos MA, Zetu I. Non-Compliance Distalization Appliances Supported by Mini-Implants: A Systematic Review. Applied Sciences. 2023; 13(8):5176. https://doi.org/10.3390/app13085176
Chicago/Turabian StyleKarvelas, Nikolaos, Bogdan Radu Dragomir, Alice Chehab, Tinela Panaite, Moschos A. Papadopoulos, and Irina Zetu. 2023. "Non-Compliance Distalization Appliances Supported by Mini-Implants: A Systematic Review" Applied Sciences 13, no. 8: 5176. https://doi.org/10.3390/app13085176
APA StyleKarvelas, N., Dragomir, B. R., Chehab, A., Panaite, T., Papadopoulos, M. A., & Zetu, I. (2023). Non-Compliance Distalization Appliances Supported by Mini-Implants: A Systematic Review. Applied Sciences, 13(8), 5176. https://doi.org/10.3390/app13085176