A Study on the Summer Microclimate Environment of Public Space and Pedestrian Commercial Streets in Regions with Hot Summers and Cold Winters
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Research Methods and Experimental Parameter Design
2.2.1. Research Methods and Indicators
2.2.2. Experimental Parameter Design
2.2.3. Verification of ENVI-Met Feasibility
2.3. Prototype Extraction of Street Space
2.4. Experiment Design
2.4.1. Moving Lines of Streets
2.4.2. Locations of Open Space
2.4.3. Greening Layout
3. Results and Discussions
3.1. Analysis on Experimental Results
3.1.1. Analysis of Microclimate Results of Experiments for Moving Lines of Streets
3.1.2. Analysis of Microclimate Results of Experiments on Open Space Layout
3.1.3. Analysis of Microclimate Results of Experiments on Greening Layout
3.2. Optimization Strategies for Street Space of Pedestrian Commercial Street
3.2.1. Optimization Strategy for Street Flow Line Direction
3.2.2. Optimization Strategy for Open Space of Street
3.2.3. Optimization Strategy for Greening Layout of Street
3.2.4. Thoughts on Winter Thermal Comfort in Pedestrian Commercial Streets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z. Research on Dynamic Regeneration Design of Traditional Walking Commercial Street in Post-E-Commerce Era. Master’s Thesis, Jilin Jianzhu University, Changchun, China, 2019. [Google Scholar]
- Huang, Z.; Wu, C.; Teng, M.; Lin, Y. Impacts of Tree Canopy Cover on Microclimate and Human Thermal Comfort in a Shallow Street Canyon in Wuhan, China. Atmosphere 2020, 11, 588. [Google Scholar] [CrossRef]
- Malaktou, E.; Philokyprou, M. Summer thermal comfort conditions in shopping arcades and their adjoining streets in hot and dry climates. The case of the Nicosia’s historic centre. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012093. [Google Scholar] [CrossRef]
- Muniz-Gäal, L.P.; Pezzuto, C.C.; Carvalho, M.F.H.d.; Mota, L.T.M. Urban geometry and the microclimate of street canyons in tropical climate. Build. Environ. 2020, 169, 106547. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; The MIT Press: London, UK, 1960. [Google Scholar]
- Sun, L.; Song, J.; Teng, S.; Guo, X. Quantitative Study on the Morphology Type and Perception of the Interface of Pedestrian Commercial Street. Planners 2020, 36, 87–92. [Google Scholar]
- Zhang, Y.; Li, T.; Gu, Y.; Zhang, S. Compound Update Policy for Commercial and Residential Complex Traditional Blocks: A Renovation Case Study of Baihui Blocks in Xuzhou City. Mod. Urban Res. 2014, 2014, 57–62. [Google Scholar]
- Zhu, H.; Liu, J.; Li, L.; Tao, H. Research progress on urban recreational business district (RBD) in China. Prog. Geogr. 2014, 33, 1474–1485. [Google Scholar]
- Ali-Toudert, F.; Mayer, H. Erratum to “Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate” [Building and Environment 41 (2006) 94–108]. Build. Environ. 2007, 42, 1553–1554. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Swaid, H.; Hoffman, M.E. On the Correct Specification of the Analytical CTTC Model for Predicting the Urban Canopy Layer Temperature. Energy Build. 2004, 36, 975–978. [Google Scholar] [CrossRef]
- Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Integrated Modeling of Pedestrian Energy Exchange and Thermal Comfort in Urban Street Canyons. Build. Environ. 2007, 42, 2396–2409. [Google Scholar] [CrossRef]
- Bourbia, F.; Boucheriba, F. Impact of Street Design on Urban Microclimate for Semiarid Climate (Constantine). Renew. Energy 2010, 35, 343–347. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J. Numerical Simulation of Urban Street Canyon Thermal Environment and Countermeasures for Planning and Design. Archit. J. 2007, 37–39. [Google Scholar]
- Guo, L. Coupling Mechanism and Optimization Regulation of Block Morphology and Microclimate in Typical Urban Central Area Plain in Cold Zone. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2020. [Google Scholar]
- Cui, P. Study on Thermal Comfort and Microclimate Enhancement Strategy of Commercial Block Morphology in Harbin. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2020. [Google Scholar]
- The Ministry of Construction of the People’s Republic of China. Uniform Standard for Design of Civil Buildings; Architecture & Media Co., Ltd.: Beijing, China, 2019. [Google Scholar]
- The Ministry of Construction of the People’s Republic of China. Thermal Design Code for Civil Building; Architecture & Media Co., Ltd.: Beijing, China, 1993. [Google Scholar]
- Cao, L.S.; Xu, H.; Li, H. Effect of Greening Trees on Thermal Comfort of the Pedestrian Streets in Hot Summer and Cold Winter Regions in China. Nat. Environ. Pollut. Technol. 2022, 21, 1543–1552. [Google Scholar] [CrossRef]
- Li, D.; Zhao, K.; Ge, J.; Ren, M. Outdoor environmental investigation of old communities during summer in hot summer and cold winter. Indoor Built Environ. 2022, 31, 45–62. [Google Scholar] [CrossRef]
- Huang, Z.; Gou, Z.; Cheng, B. An investigation of outdoor thermal environments with different ground surfaces in the hot summer-cold winter climate region. J. Build. Eng. 2020, 27, 100994. [Google Scholar] [CrossRef]
- Ma, X.; Fukuda, H.; Zhou, D.; Gao, W.; Wang, M. The study on outdoor pedestrian thermal comfort in blocks: A case study of the Dao He Old Block in hot-summer and cold-winter area of southern China. Solar Energy 2019, 179, 210–225. [Google Scholar] [CrossRef]
- Glenn, R.; Gregor, M.; Burton, I.; Ebi, K. Biometeorology for Adaptation to Climate Variability and Change; Springer: London, UK, 2009. [Google Scholar]
- Pang, C.; Jiang, W. A Study of Physiological Equivalent Effect Temperature. Acta Astronaut. 1984, 11, 10–15. [Google Scholar]
- Zheng, Y.; Yu, Y.; Tan, J.; Wu, R.; Xu, X. Influence of Meteorological Parameters on Human Comfort Index. Meteorol. Sci. Technol. 2007, 35, 827–831. [Google Scholar]
- Li, Y.; Liu, H.; Gao, L.; Liu, T. Analysis of the PMV thermal comfort model and its index. Miner. Eng. Res. 2016, 31, 70–75. [Google Scholar]
- Zhao, Z.; Chen, J.; Zhong, J.; Yang, S. Nanjing Thermal Comfort Status Analysis Based on Standard Effective Temperature and Discomfort Index. Meteorol. Sci. Technol. 2013, 36, 16–21. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Shu, L. Research on Campus Microclimate and Thermal Comfort in Hot Summer and Cold Winter Regions. Master’s Thesis, Anhui Jianzhu University, Hefei, China, 2022. [Google Scholar]
- Liu, B.; Wei, D.; Li, L. A Study of Thermal Comfort at Shanghai Guoge Square. Chinese Landsc. Archit. 2017, 33, 5–11. [Google Scholar]
- Yang, L.; Liu, J.; Ren, J.; Zhu, X.; An, F. Study on outdoor thermal comfort of campus under special high temperature climate in transition season. J. Shangdong Jianzhu Univ. 2021, 36, 75–82+96. [Google Scholar]
- Sun, X. Research on the Influence of Topographic Design of Parks in the Main Urban Area of Harbin on Summer Microclimate. Master’s Thesis, Northeast Forestry University, Harbin, China, 2022. [Google Scholar]
- Yang, J.; Zhao, Y.; Ji, K.; Liu, W. Research on Microclimate Transformation Strategy of University Front Square in Hot Summer and Warm Winter Region: A Case of the Front Square of Guangzhou University. Urban Archit. 2023, 20, 44–47. [Google Scholar]
- Chang, X. Study on Outdoor Thermal Comfort Evaluation and Spatial Form Optimization Strategy of Huaihe Road Pedestrian Block in Hefei Based on ENVI-Met. Master’s Thesis, Anhui Jianzhu University, Hefei, China, 2022. [Google Scholar]
- Zhang, S.; Shu, L.; Xiao, Y.; Shi, J.; Jiang, L. Outdoor Thermal Comfort Analysis of Primary School Based on ENVI-met:Taking Hefei as an Example. J. Huaiyin Inst. Technol. 2021, 30, 70–77. [Google Scholar]
- Höppe, P.R. Heat balance modeling. Experientia 1993, 49, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. The physiological equivalent temperature-a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Smith, P.; Henriquez, C. Perception of thermal comfort in outdoor public spaces in the medium-sized city of Chillan, Chile, during a warm summer. Urban Clim. 2019, 30, 100525. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Jiang, Z. Study on the External Space Design of Commercial Pedestrian Street from the Perspective of Experience. Master’s Thesis, Chongqing University, Chongqing, China, 2021. [Google Scholar]
- Yu, X. Space Shape Design and Mode Research of Hangzhou Commercial Pedestrian Streets. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Yu, Y. Research on Vital Regeneration of Old Town Pedestrian Commercial Street Based on Consumer Behavior—A Case Study of Huaihe Road Pedestrian Street in Hefei. Master’s Thesis, Hefei University of Technology, Hefei, China, 2019. [Google Scholar]
- Huang, M.; Cui, P.; He, X. Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect. Sustainability 2018, 10, 1101. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build. Environ. 2012, 51, 285–295. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Xiao, R.; Guan, D. Thermal island regulation differences of urban green spaces between autumn and winter in Guangzhou, South China. Zhongshan Daxue Xuebao 2018, 57, 38–48. [Google Scholar]
- Gatto, E.; Buccolieri, R.; Aarrevaara, E.; Ippolito, F.; Emmanuel, R.; Perronace, L.; Santiago, J.L. Impact of Urban Vegetation on Outdoor Thermal Comfort: Comparison between a Mediterranean City (Lecce, Italy) and a Northern European City (Lahti, Finland). Forests 2020, 11, 228. [Google Scholar] [CrossRef]
- Karimi Afshar, N.; Karimian, Z.; Doostan, R.; Habibi Nokhandan, M. Influence of planting designs on winter thermal comfort in an urban park. J. Environ. Eng. Landsc. Manag. 2018, 26, 232–240. [Google Scholar] [CrossRef]
- Wang, K.; Fang, X.; Ma, Y.; Xue, S.; Yin, S. Assessing Effects of Urban Greenery on the Regulation Mechanism of Microclimate and Outdoor Thermal Comfort during Winter in China’s Cold Region. Land 2022, 11, 1442. [Google Scholar] [CrossRef]
- Huang, H.; Peng, M. The outdoor thermal comfort of urban square: A field study in a cold season in Chongqing. IOP Conf. Ser. Earth Environ. Sci. 2020, 467, 012215. [Google Scholar] [CrossRef]
- Javadi, R.; Nasrollahi, N. Urban green space and health: The role of thermal comfort on the health benefits from the urban green space; a review study. Build. Environ. 2021, 202, 108039. [Google Scholar] [CrossRef]
- Tochaiwat, K.; Phichetkunbodee, N.; Suppakittpaisarn, P.; Rinchumphu, D.; Tepweerakun, S.; Kridakorn Na Ayutthaya, T.; Sittisom, P. Eco-Efficiency of Green Infrastructure on Thermal Comfort of Outdoor Space Design. Sustainability 2023, 15, 2566. [Google Scholar] [CrossRef]
- Galagoda, R.U.; Jayasinghe, G.Y.; Halwatura, R.U.; Rupasinghe, H.T. The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. Urban For. Urban Green. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- Howarth, M.E.; Laird, N.F. Intraseasonal Variations of Winter Wind Chill Temperatures across Canada and the United States. J. Appl. Meteorol. Climatol. 2017, 56, 2951–2962. [Google Scholar] [CrossRef]
- Hadianpour, M.; Mahdavinejad, M.; Bemanian, M.; Haghshenas, M.; Kordjamshidi, M. Effects of windward and leeward wind directions on outdoor thermal and wind sensation in Tehran. Build. Environ. 2019, 150, 164–180. [Google Scholar] [CrossRef]
- Chen, L.; Mak, C.M. Integrated impacts of building height and upstream building on pedestrian comfort around ideal lift-up buildings in a weak wind environment. Build. Environ. 2021, 200, 107963. [Google Scholar] [CrossRef]
- An, N.; Yao, J.; Zhou, Y. 2022. Study on the Outdoor Thermal Comfort of Shanghai Campus in Summer—A Case Study of Tongji University. Build. Sci. 2022, 38, 250–260. [Google Scholar]
- Yang, F. Investigating wintertime pedestrian wind environment and user perception in dense residential neighbourhood in a city of hot-summer and cold-winter climate zone, China. Indoor Built Environ. 2017, 26, 392–408. [Google Scholar] [CrossRef]
- Jiang, Z.; Peng, L.; Yang, X.; Yao, L.; Zhu, C. Thermal effects of block-scale roof greening and their relationships with urban geometry. Acta Ecol. Sin. 2018, 38, 7120–7134. [Google Scholar]
Initial Simulation Time | Simulation Duration | Temperature (°C) | Relative Humidity (%) | Average Wind Speed (m/s) | Average Wind Direction (°) |
---|---|---|---|---|---|
11:00 | 10 h (From 11:00 to 20:00) | 33.3 (11:00) 33.8 (12:00) 34.9 (13:00) 35.4 (14:00) 35.3 (15:00) 35.0 (16:00) 34.6 (17:00) 34.0 (18:00) 33.1 (19:00) 32.2 (20:00) | 59 (11:00) 58 (12:00) 56 (13:00) 58 (14:00) 57 (15:00) 56 (16:00) 59 (17:00) 64 (18:00) 59 (19:00) 66 (20:00) | 3.45 | 175.62 |
Meteorological Parameters | Range | Accuracy |
---|---|---|
Temperature | From −20 °C to 125 °C | ±0.5 °C |
Relative humidity | Between 0 and 100% RH | ±3% RH |
Wind speed | From 0.05 to 5 m/s | 0.05~2.0 m/s ± (0.05 + 2% reading) 2.0~5.0 m/s ± (0.1 + 2% reading) |
Time | Measured Temperature (°C) | Simulated Temperature (°C) | Measured Relative Humidity (%) | Simulated Relative Humidity (%) |
---|---|---|---|---|
11:00 | 33.7 | 32.6 | 57.4 | 54.3 |
12:00 | 34.1 | 33.3 | 54.6 | 52.6 |
13:00 | 35.9 | 34.0 | 50.4 | 51.0 |
14:00 | 37.8 | 34.6 | 50.0 | 51.2 |
15:00 | 37.3 | 34.8 | 53.1 | 50.8 |
16:00 | 37.2 | 34.7 | 50.2 | 50.3 |
17:00 | 36.0 | 34.4 | 53.1 | 50.3 |
18:00 | 35.4 | 33.8 | 55.8 | 51.9 |
19:00 | 34.9 | 33.0 | 58.8 | 54.7 |
20:00 | 33.5 | 32.4 | 59.5 | 55.9 |
Land Area | Plot Ratio | Building Density | Greening Rate | Greening Structure | Number of Macrophanerophytes |
---|---|---|---|---|---|
1 ha | 1.2 | 36% | 30% | Macrophanerophytes—herbs | 50 |
Land Area | Plot Ratio | Building Density | Greening Rate | Greening Structure | Number of Macrophanerophytes |
---|---|---|---|---|---|
1 ha | 1.17 | 39% | 22.8% | Macrophanerophytes—grasses | 48 |
Land Area | Plot Ratio | Building Density | Greening Rate | Greening Structure | Number of Macrophanerophytes |
---|---|---|---|---|---|
1 ha | 1.17 | 39% | 19.69% | Macrophanerophytes—grasses | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Tang, H.; Zheng, B.; Sun, Z. A Study on the Summer Microclimate Environment of Public Space and Pedestrian Commercial Streets in Regions with Hot Summers and Cold Winters. Appl. Sci. 2023, 13, 5263. https://doi.org/10.3390/app13095263
Liu J, Tang H, Zheng B, Sun Z. A Study on the Summer Microclimate Environment of Public Space and Pedestrian Commercial Streets in Regions with Hot Summers and Cold Winters. Applied Sciences. 2023; 13(9):5263. https://doi.org/10.3390/app13095263
Chicago/Turabian StyleLiu, Junyou, Haifang Tang, Bohong Zheng, and Zhaoqian Sun. 2023. "A Study on the Summer Microclimate Environment of Public Space and Pedestrian Commercial Streets in Regions with Hot Summers and Cold Winters" Applied Sciences 13, no. 9: 5263. https://doi.org/10.3390/app13095263
APA StyleLiu, J., Tang, H., Zheng, B., & Sun, Z. (2023). A Study on the Summer Microclimate Environment of Public Space and Pedestrian Commercial Streets in Regions with Hot Summers and Cold Winters. Applied Sciences, 13(9), 5263. https://doi.org/10.3390/app13095263