Study on Thermal Error Modeling for CNC Machine Tools Based on the Improved Radial Basis Function Neural Network
Abstract
:1. Introduction
2. Literature Review
3. Thermal Error Experiment
3.1. Experiment Subject
3.2. Data Analysis
4. Methodology
4.1. Temperature-Sensitive Variable Selection
4.1.1. K-Means Clustering Algorithm
4.1.2. Correlation Analysis Method
4.1.3. KR-BPNN Method
4.2. Thermal Error Modeling
4.2.1. RBF Neural Network
4.2.2. The Improved PSO Algorithm
4.2.3. IPSO-RBFNN Model on Thermal Error Modeling
5. Performance Evaluation
5.1. Temperature-Sensitive Variables Selection
5.2. Performance Comparison
6. Experimental Verification
6.1. Verification of the IPSO-RBFNN Model at Different Rotational Velocities
6.2. Verification of the IPSO-RBFNN Models with Different Error Terms
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancisidor, I.; Zatarain, M.; Munoa, J.; Dombovari, Z. Fixed Boundaries Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction. Adv. Mater. Res. 2011, 223, 622–631. [Google Scholar] [CrossRef]
- Ramesh, R.; Mannan, M.; Poo, A. Error compensation in machine tools—A review Part I: Geometric, cutting-force induced and fixture-dependent errors. Int. J. Mach. Tools Manuf. Des. Res. Appl. 2000, 40, 1235–1256. [Google Scholar] [CrossRef]
- Abele, E.; Altintas, Y.; Brecher, C. Machine tool spindle units. Cirp. Ann. 2010, 59, 781–802. [Google Scholar] [CrossRef]
- Pan, S.W. Summary of Research Status on Thermal Error Robust Modeling of NC Lathe. Tool Eng. 2007, 41, 10–14. [Google Scholar]
- Ni, J. CNC machine accuracy enhancement through real-time error compensation. Manuf. Sci. Eng. 1997, 119, 717–725. [Google Scholar] [CrossRef]
- Liu, J.; Ma, C.; Wang, S. Precision loss modeling method of ball screw pair. Mech. Syst. Signal Process. 2020, 135, 106397. [Google Scholar] [CrossRef]
- Grama, S.N.; Mathur, A.; Badhe, A.N. A model-based cooling strategy for motorized spindle to reduce thermal errors. Int. J. Mach. Tools Manuf. 2018, 132, 3–16. [Google Scholar] [CrossRef]
- Chen, T.-C.; Chang, C.-J.; Hung, J.-P.; Lee, R.-M.; Wang, C.-C. Real-Time Compensation for Thermal Errors of the Milling Machine. Appl. Sci. 2016, 6, 101. [Google Scholar] [CrossRef]
- Aguirre, G.; Nanclares, A.; Urreta, H. Thermal Error Compensation for Large Heavy Duty Milling-Boring Machines. In Proceedings of the Euspen Special Interest Group Meeting, Thermal Issues, Zurich, Switzerland, 7 March 2014; pp. 19–20. [Google Scholar]
- Ivo, P.; Dagmar, B. Total Least Squares Approach to Modeling: A Matlab Toolbox. Acta Montan. Slovaca 2010, 15, 158. [Google Scholar]
- Wang, H.; Li, T.; Wang, L.; Li, F. Review on Thermal Error Modeling of Machine Tools. J. Mech. Eng. 2015, 51, 119–128. [Google Scholar] [CrossRef]
- Li, Y.; Yu, M.; Bai, Y.; Hou, Z.; Wu, W. A Review of Thermal Error Modeling Methods for Machine Tools. Appl. Sci. 2021, 11, 5216. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, W.; Lan, S.; Ni, J.; Wu, W.; Lu, B. A review on spindle thermal error compensation in machine Tools. Int. J. Mach. Tools Manuf. 2015, 95, 20–38. [Google Scholar] [CrossRef]
- Ramesh, R.; Mannan, M.A.; Poo, A.N.; Keerthi, S.S. Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian Network—Support vector machine model. Int. J. Mach. Tools Manuf. 2003, 43, 405–419. [Google Scholar] [CrossRef]
- Wang, C.N.; Qin, B.; Qin, Y.; Yuan, Y.; Wu, Q.C.; Zhang, W.X. Thermal Error Prediction of Numerical Control Machine Based on Improved Particle Swarm Optimized Back Propagation Neural Network. In Proceedings of the 11th International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015; pp. 820–824. [Google Scholar]
- Liu, K.; Yu, L.; Yang, D.Z. Comparative Experimental Research on Modeling of Thermal Error Neural Network of Machine Tool. J. Sichuan Univ. Sci. Eng. Nat. Sci. Ed. 2018, 31, 21–26. [Google Scholar]
- Ren, M.; Huang, X.; Zhu, X.; Shao, L. Optimized PSO algorithm based on the simplicial algorithm of fixed point theory. Appl. Intell. 2020, 50, 2009–2024. [Google Scholar] [CrossRef]
- Ghasemi, M.; Akbari, E.; Rahimnejad, A.; Razavi, S.; Ghavidel, S.; Li, L. Phasor particle swarm optimization: A simple and efficient variant of PSO. Soft Comput. A Fusion Found. Methodol. Appl. 2019, 23, 9701–9718. [Google Scholar] [CrossRef]
- Hojung, L.; Cho-Jui, H.; Jong-Seok, L. Local Critic Training for Model-Parallel Learning of Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 1–13. [Google Scholar]
- Kostenko, V.A.; Seleznev, L.E. Random Search Algorithm with Self-Learning for Neural Network Training. Opt. Mem. Neural Netw. 2021, 30, 180–186. [Google Scholar] [CrossRef]
- Bin, W.; Lan, Y.; Feng, W.; Diyi, C. Fuzzy predictive functional control of a class of non-linear systems. IET Control Theory Appl. 2019, 13, 2281–2288. [Google Scholar]
- Seyed, M.; Aliakbar, J. Fuzzy tracking control of fuzzy linear dynamical systems. ISA Trans. 2020, 97, 102–115. [Google Scholar]
- Iyer, V.H.; Mahesh, S.; Malpani, R.; Sapre, M.; Kulkarni, A.J. Adaptive Range Genetic Algorithm: A hybrid optimization approach and its application in the design and economic optimization of Shell-and-Tube Heat Exchanger. Eng. Appl. Artif. Intell. Int. J. Intell. Real-Time Autom. 2019, 85, 444–461. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Wu, X.; Lv, X. Application of simulated annealing genetic algorithm-optimized back propagation (BP) neural network in fault diagnosis. Int. J. Model. Simul. Sci. Comput. 2019, 10, 1950024.1–1950024.12. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, L.; Xu, H. Application of improved genetic algorithm in ultrasonic location of transformer partial discharge. Neural Comput. Appl. 2020, 32, 1755–1764. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Fan, K.; Zhang, Y. Integrated geometric and thermal error modeling and compensation for vertical machining centers. Int. J. Adv. Manuf. Technol. 2015, 76, 1139–1150. [Google Scholar] [CrossRef]
- Mayr, J.; Blaser, P.; Ryser, A.; Hernández-Becerro, P. An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates. CIRP Ann. 2018, 67, 551–554. [Google Scholar] [CrossRef]
- Liu, H.W.; Yang, Y.; Xiang, H.; Wang, J.P.; Chen, G.H. Research on Thermal Error Compensation Technology of Machine Tool Spindle On Least Square Method. Mach. Des. Res. 2020, 36, 130–133. [Google Scholar]
- Pajor, M.; Zapłata, J. Compensation of thermal deformations of the feed screw in a CNC machine tool. Adv. Manuf. Sci. Technol. 2011, 35, 9–17. [Google Scholar]
- Liu, P.; Du, Z.; Li, H.; Deng, M.; Feng, X.; Yang, J. Thermal error modeling based on BiLSTM deep learning for CNC machine tool. Adv. Manuf. 2021, 9, 235–249. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, X.; Mei, X.; Tao, T.; Wang, H. Thermal error modeling of machine tool based on dimensional error of machined parts in automatic production line. ISA Trans. 2022, 135, 575–584. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, J.G. Application of an Optimized Grey System Model on 5-Axis CNC Machine Tool Thermal Error Modeling. In Proceedings of the 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, China, 7–9 November 2010; pp. 1–5. [Google Scholar]
- Tien, T.-L. A research on the grey prediction model GM(1,n). Appl. Math. Comput. 2012, 218, 4903–4916. [Google Scholar] [CrossRef]
- Wang, S.; Hu, S.W.; Jiang, X.L.; Xu, F.; Wu, J. Thermal Error Modeling Optimization Method for Numerical Control Machine Tool Based on CS—GMC (1,N). Mach. Tool Hydraul. 2020, 48, 126–131. [Google Scholar]
- Miao, E.M.; Gong, Y.Y.; Cheng, T.J.; Chen, H.L. Application of support vector regression machine to thermal error modelling of machine tools. Opt. Precis. Eng. 2013, 21, 980–986. [Google Scholar] [CrossRef]
- Zhang, E.Z.; Qi, Y.L.; Ji, S.J.; Chen, Y.P. Thermal Error Modeling and Compensation for Precision Polishing Platform Based on Support Vector Regression Machine. Modul. Mach. Tool Autom. Manuf. Tech. 2017, 58, 48–51. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q.; Zhu, B.; Wang, B.; Zhu, W.; Dai, Y. Thermal error modeling of high-speed electric spindle based on Aquila Optimizer optimized least squares support vector machine. Case Stud. Therm. Eng. 2022, 39, 102432. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Li, X.; Tian, L. Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. Int. J. Adv. Manuf. Technol. 2014, 71, 1669–1675. [Google Scholar] [CrossRef]
- Liu, H.; Miao, E.M.; Feng, D.; Li, J.G.; Ma, H.F.; Zhang, Z.H. Thermal Error Modeling Algorithm Based on Overall Adjustment Strategy Neural Network. J. Chongqing Univ. Technol. Nat. Sci. 2020, 34, 107–115. [Google Scholar]
- Su, T.M.; Ye, S.P.; Sun, W. Thermal Error Compensation Modeling Based on Fuzzy C -means Clustering Algorithm and RBF Neural Network Modeling. Modul. Mach. Tool Autom. Manuf. Tech. 2011, 10, 1–4. [Google Scholar]
- Zhang, H.N. Research on Modeling of Machining Center Spindle Thermal Error Based on Improved RBF Network. Technol. Autom. Appl. 2019, 38, 60–74. [Google Scholar]
- Elghaish, F.; Talebi, S.; Abdellatef, E.; Matarneh, S.T.; Hosseini, M.R.; Wu, S.; Mayouf, M.; Hajirasouli, A.; Nguyen, T.Q. Developing a new deep learning CNN model to detect and classify highway cracks. J. Eng. Des. Technol. 2022, 20, 993–1014. [Google Scholar] [CrossRef]
- Asifullah, K.; Anabia, S.; Umme, Z.; Aqsa, S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar]
- Wang, R.; Lei, Z.; Zhang, Z.; Gao, S. Dendritic Convolutional Neural Network. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 302–304. [Google Scholar] [CrossRef]
- Aziz, R.M.; Mahto, R.; Goel, K.; Das, A.; Kumar, P.; Saxena, A. Modified Genetic Algorithm with Deep Learning for Fraud Transactions of Ethereum Smart Contract. Appl. Sci. 2023, 13, 697. [Google Scholar] [CrossRef]
- Rezaei, H.; Faaljou, H.; Mansourfar, G. Stock price prediction using deep learning and frequency decomposition. Expert Syst. Appl. 2021, 169, 114–332. [Google Scholar] [CrossRef]
- Yin, X.; Tao, X. Prediction of Merchandise Sales on E-Commerce Platforms Based on Data Mining and Deep Learning. Sci. Program. 2021, 2021, 2179692. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Yu, P. Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Trans. Knowl. Data Eng. 2020, 1, 3681–3700. [Google Scholar] [CrossRef]
- Wu, C.; Xiang, S.; Xiang, W. Spindle thermal error prediction approach based on thermal infrared images: A deep learning method. J. Manuf. Syst. 2021, 59, 67–80. [Google Scholar]
- ISO 230-3; Test Code for Machine Tools Part 3: Determination of Thermal Effects 2020. ISO Copyright Office: London, UK, 2020.
- MacQueen, J. Some methods for classification and analysis of multivariate observations. Symp. Math. Stat. Probab. 1967, 281–297. [Google Scholar]
- Kristina, P.; Sinaga; Ishtiaq, H.; Miin-Shen, Y. Entropy K-Means Clustering with Feature Reduction under Unknown Number of Clusters. IEEE Access 2021, 9, 67736–67751. [Google Scholar]
- Yuan, Q.; Ma, C.; Liu, J.; Gui, H.; Li, M.; Wang, S. Correlation analysis-based thermal error control with ITSA-GRU-A model and cloud-edge-physical collaboration framework. Adv. Eng. Inform. 2022, 54, 101759. [Google Scholar] [CrossRef]
- Wei, J.; Xu, S.; Liu, H. Simplified Model for Predicting Fabric Thermal Resistance According to its Microstructural Parameters. Fibres Text. East. Eur. 2015, 23, 57–60. [Google Scholar]
- Ma, C.; Zhao, L.; Mei, X.; Shi, H.; Yang, J. Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int. J. Adv. Manuf. Technol. 2017, 89, 3071–3085. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, D.; Ding, L. An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample. Appl. Soft Comput. 2016, 48, 373–384. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, J.; Liu, Y.; Lu, J. Evolving RBF Neural Networks for Pattern Classification. Lect. Notes Comput. Sci. 2005, 3801, 957–964. [Google Scholar]
- Markus, B.; Oliver, B.; Timo, H.; Ralf, K.; Bernhard, S.; Robert, W. Technical data mining with evolutionary radial basis function classifiers. Appl. Soft Comput. 2009, 9, 765–774. [Google Scholar]
- Hasan, Ö.; Yiğit, A.; Mert, Ş.; Abdullah, K. Estimations for (n,α) reaction cross sections at around 14.5MeV using Levenberg-Marquardt algorithm-based artificial neural network. Appl. Radiat. Isot. 2022, 192, 110609. [Google Scholar]
- Akkoyun, S. Estimation of fusion reaction cross-sections by artificial neural networks. Nucl. Instrum. Methods Phys. Res. Sect. B 2020, 462, 51–54. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar]
Number | Area |
---|---|
T1~T5 | Spindle Area (A) |
T6~T10 | Spindle Box Area (B) |
T11~T14 | Machine Box Area (C) |
T15 | Working Table Area (D) |
T16 | Surface of Machine Tool (E) |
Batch | Spindle Velocity (rpm) | Ambient Temperature (°C) | Batch | Spindle Velocity (rpm) | Ambient Temperature (°C) |
---|---|---|---|---|---|
B1 | 800 | 14.26 | B11 | 8000 | 18.08 |
B2 | 800 | 17.60 | B12 | 8000 | 22.09 |
B3 | 800 | 18.12 | B13 | 10,000 | 15.02 |
B4 | 800 | 20.12 | B14 | 10,000 | 17.66 |
B5 | 4000 | 15.10 | B15 | 10,000 | 18.41 |
B6 | 4000 | 17.04 | B16 | 10,000 | 21.33 |
B7 | 4000 | 19.45 | B17 | 12,000 | 16.44 |
B8 | 4000 | 20.55 | B18 | 12,000 | 18.05 |
B9 | 8000 | 15.33 | B19 | 12,000 | 19.06 |
B10 | 8000 | 17.56 | B20 | 12,000 | 22.32 |
Temperature Variables | Temperature Variables | ||
---|---|---|---|
T1 | 0.8540 | T9 | 0.7415 |
T2 | 0.7845 | T10 | 0.7345 |
T3 | 0.7858 | T11 | 0.7341 |
T4 | 0.8289 | T12 | 0.7714 |
T5 | 0.8475 | T13 | 0.8228 |
T6 | 0.7937 | T14 | 0.7968 |
T7 | 0.7345 | T15 | 0.2276 |
T8 | 0.7441 | T16 | 0.7616 |
K | Clustering Result |
---|---|
K = 3 | {T6}, {T1~T5, T7~T10}, {T11~T16} |
K = 4 | {T6}, {T1~T5, T8~T10}, {T7, T12~T14}, {T11, T15, T16} |
K = 5 | {T11~T15}, {T1, T2, T4, T5, T8}, {T7, T9, T10}, {T16}, {T6} |
K = 6 | {T16}, {T1, T2, T4, T5, T8}, {T11, T12, T15}, {T3, T9, T10}, {T13, T14}, {T6} |
K = 7 | {T16}, {T2}, {T13, T14}, {T11, T12, T15}, {T1, T3~T5, T8~T10}, {T6}, {T7} |
K = 8 | {T1, T4, T5, T8}, {T2}, {T16}, {T3, T9, T10}, {T11, T15}, {T6}, {T7}, {T12, T13} |
K | Combination of Sensitive Temperature Points |
---|---|
K = 3 | T1, T6, T13 |
K = 4 | T1, T6, T13, T16 |
K = 5 | T1, T6, T9, T13, T16 |
K = 6 | T1, T3, T6, T12, T13, T16 |
K = 7 | T1, T2, T6, T7, T12, T13, T16 |
K = 8 | T1, T2, T3, T6, T7, T11, T13, T16 |
Velocity (rpm) | Model | MSE (μm2) | RMSE (μm) |
---|---|---|---|
4000 | RBFNN | 1.946 | 43.26 |
4000 | IPSO-RBFNN | 1.499 | 3.927 |
8000 | RBFNN | 0.495 | 22.26 |
8000 | IPSO-RBFNN | 0.026 | 5.162 |
Error Term | Model | MSE (μm2) | RMSE (μm) |
---|---|---|---|
X2 | RBFNN | 438.4 | 20.91 |
X2 | IPSO-RBFNN | 8.057 | 2.831 |
Y1 | RBFNN | 205.4 | 14.32 |
Y1 | IPSO-RBFNN | 4.328 | 2.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Min, X.; Jiang, W.; Song, F.; Li, X. Study on Thermal Error Modeling for CNC Machine Tools Based on the Improved Radial Basis Function Neural Network. Appl. Sci. 2023, 13, 5299. https://doi.org/10.3390/app13095299
Feng Z, Min X, Jiang W, Song F, Li X. Study on Thermal Error Modeling for CNC Machine Tools Based on the Improved Radial Basis Function Neural Network. Applied Sciences. 2023; 13(9):5299. https://doi.org/10.3390/app13095299
Chicago/Turabian StyleFeng, Zhiming, Xinglong Min, Wei Jiang, Fan Song, and Xueqin Li. 2023. "Study on Thermal Error Modeling for CNC Machine Tools Based on the Improved Radial Basis Function Neural Network" Applied Sciences 13, no. 9: 5299. https://doi.org/10.3390/app13095299
APA StyleFeng, Z., Min, X., Jiang, W., Song, F., & Li, X. (2023). Study on Thermal Error Modeling for CNC Machine Tools Based on the Improved Radial Basis Function Neural Network. Applied Sciences, 13(9), 5299. https://doi.org/10.3390/app13095299