Promising Electrode Surfaces, Modified with Nanoparticles, in the Sensitive and Selective Electroanalytical Determination of Antibiotics: A Review
Abstract
:1. Introduction
1.1. Modified Electrode Types
- Carbon paste electrodes: These electrodes are made by mixing carbon particles with a binder material to form a paste, which is then applied to the surface of a conducting substrate. Carbon paste electrodes are often used in potentiometric and amperometric measurements.
- Electrodes modified with enzymes: Enzymes can be attached to the surface of an electrode to create a biosensor. The enzyme is chosen based on its ability to catalyze a specific reaction with a specific analyte.
- Electrodes modified with nanoparticles: Nanoparticles can be attached to the surface of an electrode to create a modified electrode with improved catalytic activity or sensitivity.
- Microelectrodes: These are small electrodes with dimensions in the order of micrometers. They are often used to study electrochemical processes at the microscopic scale.
- Electrodes modified with chemical modifiers: Chemical modifiers can be used to modify the surface of an electrode to make it reactive with certain analytes.
1.1.1. Chemically Modified Electrodes [27,33]
1.1.2. Carbon Nanotube Electrodes [39]
1.1.3. Carbon Paste Glassy Carbon Electrodes [33]
- (1)
- CGE offers an attractive electrochemical reactivity, negligible porosity, and good mechanical rigidity;
- (2)
- It has a low background current, wide potential window, and chemical inertness, and it is low cost and suitable for various sensing and detection applications. Among the carbon family, glassy carbon is the most popular electrode material that offers attractive electrochemical reactivity, negligible porosity, and good mechanical rigidity. Based on these advantages, glassy carbon microparticles were first introduced by Wang et al. [22] as electrode materials to fabricate glassy carbon paste electrodes.
1.1.4. Nanoparticle-Modified Electrodes [27,44]
- (i)
- Enhanced surface kinetics;
- (ii)
- Large electroactive surface area and therefore accelerated electrochemical reactions;
- (iii)
- Enhancement of analyte adsorption on the electrode surface and, consequently, lowered detection limits;
- (iv)
- Nanoparticles give effective active functionalization sites towards analytes and usually have good stability as supporting platforms providing better selectivity than conventional electrodes.
2. Nanoparticle-Modified Electrodes
3. Conclusions and Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aminov, R.I. A Brief History of the Antibiotic Era: Lesson Learned and Challenges for the Future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [PubMed]
- Adedeji, W.A. The Treasure Called Antibiotics. Ann. Ib. Postgrad. Med. 2016, 14, 56–57. [Google Scholar]
- Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Foulston, L. Genome mining and prospects for antibiotic discovery. Curr. Opin. Microbiol. 2019, 51, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Sobek, A.; Radke, M. Fate of Pharmaceuticals and Their Transformation Products in Four Small European Rivers Receiving Treated Wastewate. Environ. Sci. Technol. 2016, 50, 5614–5621. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, C.; Wang, Y.; Song, R.; Tan, Y.; Yang, Y.; Zhang, Z. Sources, Environmental Fate, and Ecological Risks of Antibiotics in Sediments of Asia’s Longest River: A Whole-Basin Investigation. Environ. Sci. Technol. 2022, 56, 14439–14451. [Google Scholar] [CrossRef]
- Seifrtová, M.; Nováková, L.; Lino, C.; Pena, A.; Solich, P. An Overview of Analytical Methodologies for the Determination of Antibiotics in Environmental Waters. Anal. Chim. Acta 2009, 649, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, V.O.; Duffy, B. Use of antibiotics in plant agriculture. Rev. Sci. Tech. Off. Int. Des. Epizoot. 2012, 31, 199–210. [Google Scholar] [CrossRef]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef]
- Akhil, D.; Lakshmi, D.; Kumar, P.S.; Vo, D.-V.N.; Kartik, A. Occurrence and removal of antibiotics from industrial wastewater. Environ. Chem. Lett. 2021, 19, 1477–1507. [Google Scholar] [CrossRef]
- McNulty, C.A.M.; Collin, S.M.; Cooper, E.; Lecky, D.M.; Butler, C.C. Public understanding and use of antibiotics in England: Findings from a household survey in 2017. BMJ Open 2019, 9, e030845. [Google Scholar] [CrossRef] [PubMed]
- Ur Rehman, M.S.; Rashid, N.; Ashfaq, M.; Saif, A.; Ahmad, N.; Han, J.I. Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 2015, 138, 1045–1055. [Google Scholar] [CrossRef]
- Adzitey, F. Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review. World Vet. J. 2015, 5, 36–41. [Google Scholar] [CrossRef]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Bidshahi, H.S.; Mesdaghinia, A. An optimized SPE-LC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology- central composite design. J. Environ. Health Sci. Engineer. 2017, 15, 21. [Google Scholar] [CrossRef]
- Semail, N.F.; Abdul Keyon, A.S.; Saad, B.; Kamaruzaman, S.; Mohamad Zain, N.N.; Lim, V.; Miskam, M.; Wan Abdullah, W.N.; Yahaya, N.; Chen, D.D.Y. Simultaneous Preconcentration and Determination of Sulfonamide Antibiotics in Milk and Yoghurt by Dynamic PH Junction Focusing Coupled with Capillary Electrophoresis. Talanta 2022, 236, 122833. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, M.; Amaresan, N.; Sankaranarayanan. Detection of Pyoluteorin by Thin Layer Chromatography. In Plant-Microbe Interactions. Springer Protocols Handbooks; Humana: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Barzallo, D.; Palacio, E.; March, J.; Ferrer, L. 3D Printed Device Coated with Solid-Phase Extraction Resin for the on-Site Extraction of Seven Sulfonamides from Environmental Water Samples Preceding HPLC-DAD Analysis. Environ. Anal. Chem. Gr. 2022, 25, 108609. [Google Scholar] [CrossRef]
- Shen, F.; Xu, Y.J.; Wang, Y.; Chen, J.; Wang, S. Rapid and Ultra-Trace Levels Analysis of 33 Antibiotics in Water by on-Line Solid-Phase Extraction with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2022, 1677, 463304. [Google Scholar] [CrossRef]
- Khatibi, S.A.; Hamidi, S.; Siahi-Shadbad, M.R. Application of Liquid-Liquid Extraction for the Determination of Antibiotics in the Foodstuff: Recent Trends and Developments. Crit. Rev. Anal. Chem. 2022, 52, 327–342. [Google Scholar] [CrossRef]
- Eyken, A.; Furlong, D.; Arooni, S.; Butterworth, F.; Roy, J.F.; Zweigenbaum, J.; Bayen, S. Direct injection high performance liquid chromatography coupled to data independent acquisition mass spectrometry for the screening of antibiotics in honey. J. Food Drug Anal. 2019, 27, 679–691. [Google Scholar] [CrossRef]
- Bayen, S.; Yi, X.Z.; Segovia, E.; Zhou, Z.; Kelly, B.C. Analysis of selected antibiotics in surface freshwater and seawater using direct injection in liquid chromatography electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2014, 1338, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.T.; Do, M.N.; Dang, T.N.H.; Tran, Q.H.; Le, V.T.; Dao, A.Q.; Vasseghian, Y. A State-of-the-Art Review on Graphene-Based Nanomaterials to Determine Antibiotics by Electrochemical Techniques. Environ. Res. 2022, 208, 112744. [Google Scholar] [CrossRef] [PubMed]
- Materón, E.M.; Wong, A.; Freitas, T.A.; Faria, R.C.; Oliveira, O.N. A Sensitive Electrochemical Detection of Metronidazole in Synthetic Serum and Urine Samples Using Low-Cost Screen-Printed Electrodes Modified with Reduced Graphene Oxide and C60. J. Pharm. Anal. 2021, 11, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Su, M.; Zhao, K.; Zhou, Y.; Wang, J.; Zhou, S.-F.; Lin, X. A Minireview for Recent Development of Nanomaterial-Based Detection of Antibiotics. Biosensors 2023, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xue, Q.; Chen, T.; Li, J.; Liu, W.; Shan, X.; Liu, F.; Jia, J. Recent advances in electrochemical sensors for antibiotics and their applications. Chin. Chem. Lett. 2021, 32, 609–619. [Google Scholar] [CrossRef]
- Alsaiari, N.S.; Katubi, K.M.M.; Alzahrani, F.M.; Siddeeg, S.M.; Tahoon, M.A. The Application of Nanomaterials for the Electrochemical Detection of Antibiotics: A Review. Micromachines 2021, 12, 308. [Google Scholar] [CrossRef]
- Simoska, O.; Gaffney, E.M.; Minteer, S.D.; Franzetti, A.; Cristiani, P.; Grattieri, M.; Santoro, C. Recent trends and advances in microbial electrochemical sensing technologies: An overview. Curr. Opin. Electrochem. 2021, 30, 100762. [Google Scholar] [CrossRef]
- Cox, J.A.; Tess, M.E.; Cummings, T.E. Electroanalytical Methods Based on Modified Electrodes: A Review of Recent Advances. Rev. Anal. Chem. 1996, 15, 173–223. [Google Scholar] [CrossRef]
- Gan, T.; Shi, Z.X.; Sun, J.Y.; Liu, Y.M. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations–exchanged montmorillonite catalyst. Talanta 2014, 121, 187–193. [Google Scholar] [CrossRef]
- Zhang, P.P.; Zhang, N.N.; Jing, L.J.; Hu, B.B.; Yang, X.D.; Ma, X.L. Silver Nanoparticles/Carboxylic Short-Chain Multi-Wall Carbon Nanotubes as Electrochemical Sensor for Ultrasensitive Detection of Chloramphenicol in Food. Int. J. Electrochem. Sci. 2019, 14, 9337–9346. [Google Scholar] [CrossRef]
- Rouhbakhsh, Z.; Verdian, A.; Rajabzadeh, G. Design of a liquid crystal-based aptasensing platform for ultrasensitive detection of tetracycline. Talanta 2020, 206, 120246. [Google Scholar] [CrossRef] [PubMed]
- Brett, C.M.A.; Brett, A.M.O. Electrochemistry: Principles, Methods, and Applications; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Fujihira, M. Modified Electrodes. Top. Org. Electrochem. 1986, 10, 255–294. [Google Scholar] [CrossRef]
- Edwards, G.A.; Bergren, A.J.; Porter, M.D. Chemically Modified Electrodes. Handb. Electrochem. 2007, 8, 295–327. [Google Scholar] [CrossRef]
- Murray, R.W. Chemically Modified Electrodes for Electroanalysis. Philos. Trans. R. Soc. Lond. 1981, 302, 135–141. [Google Scholar]
- Chandra, P.; Noh, H.-B.; Won, M.-S.; Shim, Y.-B. Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens. Bioelectron. 2011, 26, 4442–4449. [Google Scholar] [CrossRef]
- Hu, Y.; Chandra, P.; Song, K.-M.; Ban, C.; Shim, Y.-B. Label-Free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens. Bioelectron. 2012, 36, 29–34. [Google Scholar]
- Hu, C.; Hu, S. Carbon Nanotube-Based Electrochemical Sensors: Principles and Applications in Biomedical Systems. J. Sens. 2009, 2009, 187615. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, J.; Tu, Y.; He, P.; Fang, Y. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal. Chim. Acta 2005, 533, 11–16. [Google Scholar] [CrossRef]
- Wang, S.G.; Wang, R.; Sellin, P.J.; Zhang, Q. DNA biosensors based on self-assembled carbon nanotubes. Biochem. Biophys. Res. Commun. 2004, 325, 1433–1437. [Google Scholar] [CrossRef]
- Kerman, K.; Morita, Y.; Takamura, Y.; Tamiya, E. Escherichia coli single-strand binding protein-DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Anal. Bioanal. Chem. 2005, 381, 1114–1121. [Google Scholar] [CrossRef]
- Komersová, A.; Bartoš, M.; Kalcher, K.; Vytřas, K. Trace iron determination in aminoisophthalic acid using differential-pulse cathodic stripping voltammetry at carbon paste electrodes. J. Pharm. Biomed. Anal. 1998, 16, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Oyama, M. Recent Nanoarchitectures in Metal Nanoparticle-modified Electrodes for Electroanalysis. Anal. Sci. 2010, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Torres-Rivero, K.; Florido, A.; Bastos-Arrieta, J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. Sensors 2021, 21, 2596. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wei, Q.; Du, B.; Wu, D.; Li, H.; Yan, L.; Ma, H.; Zhang, Y. Label-Free immunosensor for the detection of kanamycin using Ag@ Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens. Bioelectron. 2013, 48, 224–229. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M.; Saleh, T.A. Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends Anal. Chem. 2019, 111, 47–61. [Google Scholar] [CrossRef]
- Cesarino, I.; Cesarino, V.; Lanza, M.R.V. Carbon Nanotubes Modified with Antimony Nanoparticles in a Paraffin Composite Electrode: Simultaneous Determination of Sulfamethoxazole and Trimethoprim. Sens. Actuators B Chem. 2013, 188, 1293–1299. [Google Scholar] [CrossRef]
- Feizollahi, A.; Rafati, A.A.; Assari, P.; Asadpour Joghani, R. Development of an Electrochemical Sensor for the Determination of Antibiotic Sulfamethazine in Cow Milk Using Graphene Oxide Decorated with Cu-Ag Core-Shell Nanoparticles. Anal. Methods 2021, 13, 910–917. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Sharma, T.S.K.; Chen, S.M.; Chen, T.W.; Dinesh, B. Ex-Situ Decoration of Graphene Oxide with Palladium Nanoparticles for the Highly Sensitive and Selective Electrochemical Determination of Chloramphenicol in Food and Biological Samples. J. Taiwan Inst. Chem. Eng. 2018, 89, 26–38. [Google Scholar] [CrossRef]
- Alavi-Tabari, S.A.R.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous Determination of Doxorubicin and Dasatinib as Two Breast Anticancer Drugs Uses an Amplified Sensor with Ionic Liquid and ZnO Nanoparticle. J. Electroanal. Chem. 2018, 811, 84–88. [Google Scholar] [CrossRef]
- Simioni, N.B.; Silva, T.A.; Oliveira, G.G.; Fatibello-Filho, O. A Nanodiamond-Based Electrochemical Sensor for the Determination of Pyrazinamide Antibiotic. Sens. Actuators B Chem. 2017, 250, 315–323. [Google Scholar] [CrossRef]
- Ghanbari, K.; Roushani, M. A Novel Electrochemical Aptasensor for Highly Sensitive and Quantitative Detection of the Streptomycin Antibiotic. Bioelectrochemistry 2018, 120, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Nosuhi, M.; Nezamzadeh-Ejhieh, A. Comprehensive Study on the Electrocatalytic Effect of Copper—Doped Nano-Clinoptilolite towards Amoxicillin at the Modified Carbon Paste Electrode—Solution Interface. J. Colloid Interface Sci. 2017, 497, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T. Gold Nanoparticles Modified Carbon Paste Electrode as an Efficient Electrochemical Sensor for Rapid and Sensitive Determination of Cefixime in Urine and Pharmaceutical Samples. Electrochim. Acta 2013, 103, 125–133. [Google Scholar] [CrossRef]
- Manjunatha, P.; Nayaka, Y.A. Cetyltrimethylammonium Bromide-Gold Nanoparticles Composite Modified Pencil Graphite Electrode for the Electrochemical Investigation of Cefixime Present in Pharmaceutical Formulations and Biology. Chem. Data Collect. 2019, 21, 100217. [Google Scholar] [CrossRef]
- Kumar, N.; Goyal, R.N. Gold-Palladium Nanoparticles Aided Electrochemically Reduced Graphene Oxide Sensor for the Simultaneous Estimation of Lomefloxacin and Amoxicillin. Sens. Actuators B Chem. 2017, 243, 658–668. [Google Scholar] [CrossRef]
- Zhai, H.; Liang, Z.; Chen, Z.; Wang, H.; Liu, Z.; Su, Z.; Zhou, Q. Simultaneous Detection of Metronidazole and Chloramphenicol by Differential Pulse Stripping Voltammetry Using a Silver Nanoparticles/Sulfonate Functionalized Graphene Modified Glassy Carbon Electrode. Electrochim. Acta 2015, 171, 105–113. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Zhang, H.; Chu, G.; Guo, Y.; Sun, X. Ultrasensitive Electrochemiluminescence Aptasensor for Kanamycin Detection Based on Silver Nanoparticle-Catalyzed Chemiluminescent Reaction between Luminol and Hydrogen Peroxide. Sens. Actuators B Chem. 2020, 304, 127367. [Google Scholar] [CrossRef]
- Atif, S.; Baig, J.A.; Afridi, H.I.; Kazi, T.G.; Waris, M. Novel Nontoxic Electrochemical Method for the Detection of Cefadroxil in Pharmaceutical Formulations and Biological Samples. Microchem. J. 2020, 154, 104574. [Google Scholar] [CrossRef]
- Liu, S.; Lai, G.; Zhang, H.; Yu, A. Amperometric Aptasensing of Chloramphenicol at a Glassy Carbon Electrode Modified with a Nanocomposite Consisting of Graphene and Silver Nanoparticles. Microchim. Acta 2017, 184, 1445–1451. [Google Scholar] [CrossRef]
- Kushikawa, R.T.; Silva, M.R.; Angelo, A.C.D.; Teixeira, M.F.S. Construction of an Electrochemical Sensing Platform Based on Platinum Nanoparticles Supported on Carbon for Tetracycline Determination. Sens. Actuators B Chem. 2016, 228, 207–213. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Gupta, V.K.; Ahmar, H.; Asadi, M.H. A Novel Biosensor for Liquid Phase Determination of Glutathione and Amoxicillin in Biological and Pharmaceutical Samples Using a ZnO/CNTs Nanocomposite/Catechol Derivative Modified Electrode. J. Mol. Liq. 2014, 196, 258–263. [Google Scholar] [CrossRef]
- Velusamy, V.; Palanisamy, S.; Kokulnathan, T.; Chen, S.W.; Yang, T.C.K.; Banks, C.E.; Pramanik, S.K. Novel Electrochemical Synthesis of Copper Oxide Nanoparticles Decorated Graphene-β-Cyclodextrin Composite for Trace-Level Detection of Antibiotic Drug Metronidazole. J. Colloid Interface Sci. 2018, 530, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, R.; Lai, M.; Ye, H.; Long, N.; Ye, J.; Wang, J. Copper Nanoparticles Incorporating a Cationic Surfactant-Graphene Modified Carbon Paste Electrode for the Simultaneous Determination of Gatifloxacin and Pefloxacin. J. Electroanal. Chem. 2020, 857, 113730. [Google Scholar] [CrossRef]
- Dai, X.; Wildgoose, G.G.; Salter, C.; Crossley, A.; Compton, R.G. Electroanalysis Using Macro-, Micro-, and Nanochemical Architectures on Electrode Surfaces. Bulk Surface Modification of Glassy Carbon Microspheres with Gold Nanoparticles and Their Electrical Wiring Using Carbon Nanotubes. Anal. Chem. 2006, 78, 6102–6108. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H.; Quan, X.; Chen, S. Electrochemical Determination of Tetracycline Using Molecularly Imprinted Polymer Modified Carbon Nanotube-Gold Nanoparticles Electrode. Electroanalysis 2011, 23, 1863–1869. [Google Scholar] [CrossRef]
- Bagheri Hashkavayi, A.; Bakhsh Raoof, J.; Ojani, R.; HamidiAsl, E. Label-Free Electrochemical Aptasensor for Determination of Chloramphenicol Based on Gold Nanocubes-Modified Screen-Printed Gold Electrode. Electroanalysis 2015, 27, 1449–1456. [Google Scholar] [CrossRef]
- Giribabu, K.; Jang, S.C.; Haldorai, Y.; Rethinasabapathy, M.; Oh, S.Y.; Rengaraj, A.; Han, Y.K.; Cho, W.S.; Roh, C.; Huh, Y.S. Electrochemical Determination of Chloramphenicol Using a Glassy Carbon Electrode Modified with Dendrite-like Fe3O4 Nanoparticles. Carbon Lett. 2017, 23, 38–47. [Google Scholar] [CrossRef]
- Prado, T.M.; Cincotto, F.H.; Moraes, F.C.; Machado, S.A.S. Electrochemical Sensor-Based Ruthenium Nanoparticles on Reduced Graphene Oxide for the Simultaneous Determination of Ethinylestradiol and Amoxicillin. Electroanalysis 2017, 29, 1278–1285. [Google Scholar] [CrossRef]
- Da Silva, M.K.L.; Plana Simões, R.; Cesarino, I. Evaluation of Reduced Graphene Oxide Modified with Antimony and Copper Nanoparticles for Levofloxacin Oxidation. Electroanalysis 2018, 30, 2066–2076. [Google Scholar] [CrossRef]
- Guaraldo, T.T.; Goulart, L.A.; Moraes, F.C.; Lanza, M.R.V. Carbon Black Nanospheres Modified with Cu (II)-Phthalocyanine for Electrochemical Determination of Trimethoprim Antibiotic. Appl. Surf. Sci. 2019, 470, 555–564. [Google Scholar] [CrossRef]
- Sanz, C.G.; Serrano, S.H.P.; Brett, C.M.A. Electroanalysis of Cefadroxil Antibiotic at Carbon Nanotube/Gold Nanoparticle Modified Glassy Carbon Electrodes. ChemElectroChem 2020, 7, 2151–2158. [Google Scholar] [CrossRef]
- da Silva, W.; Queiroz, A.C.; Brett, C.M.A. Poly(Methylene Green)—Ethaline Deep Eutectic Solvent/Fe2O3 Nanoparticle Modified Electrode Electrochemical Sensor for the Antibiotic Dapsone. Sens. Actuators B Chem. 2020, 325, 128747. [Google Scholar] [CrossRef]
- Vajdle, O.; Šekuljica, S.; Guzsvány, V.; Nagy, L.; Kónya, Z.; Avramov Ivić, M.; Mijin, D.; Petrović, S.; Anojčić, J. Use of Carbon Paste Electrode and Modified by Gold Nanoparticles for Selected Macrolide Antibiotics Determination as Standard and in Pharmaceutical Preparations. J. Electroanal. Chem. 2020, 873, 114324. [Google Scholar] [CrossRef]
- Olugbenga Osikoya, A.; Poomani Govender, P. Electrochemical Detection of Tetracycline on Highly Sensitive Benzene Sourced CVD Graphene-Gold Nanoparticles Nanointerfaces. Electroanalysis 2021, 33, 412–420. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Kholafazad-kordasht, H.; Nazhad Dolatabadi, J.E.; Hasanzadeh, M.; Rad, A.H.; Torbati, M. Sensitive Aptasensing of Ciprofloxacin Residues in Raw Milk Samples Using Reduced Graphene Oxide and Nanogold-Functionalized Poly(Amidoamine) Dendrimer: An Innovative Apta-Platform towards Electroanalysis of Antibiotics. Anal. Chim. Acta 2021, 1174, 338736. [Google Scholar] [CrossRef]
- Zeb, S.; Wong, A.; Khan, S.; Hussain, S.; Sotomayor, M.D.P.T. Using Magnetic Nanoparticles/MIP-Based Electrochemical Sensor for Quantification of Tetracycline in Milk Samples. J. Electroanal. Chem. 2021, 900, 115713. [Google Scholar] [CrossRef]
- Donini, C.A.; da Silva, M.K.L.; Simões, R.P.; Cesarino, I. Reduced Graphene Oxide Modified with Silver Nanoparticles for the Electrochemical Detection of Estriol. J. Electroanal. Chem. 2018, 809, 67–73. [Google Scholar] [CrossRef]
- Meenakshi, S.; Rama, R.; Pandian, K.; Gopinath, S.C.B. Modified Electrodes for Electrochemical Determination of Metronidazole in Drug Formulations and Biological Samples: An Overview. Microchem. J. 2021, 165, 106151. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.J. Vanadium Carbide-Entrapped Graphitic Carbon Nitride Nanocomposites: Synthesis and Electrochemical Platforms for Accurate Detection of Furazolidone. ACS Appl. Nano Mater. 2020, 3, 2554–2561. [Google Scholar] [CrossRef]
Nanoparticle | Reference |
---|---|
Gold nanoparticles | [53,55,56] |
Gold–palladium nanoparticles | [57] |
Silver nanoparticles | [58,59,60,61] |
Platinum nanoparticles | [62] |
Zinc oxide nanoparticles | [63] |
Copper oxide nanoparticles | [64] |
Palladium nanoparticles | [46] |
Antimony nanoparticles | [35] |
Type of Electrode | Antibiotic | Determination Technique | Detection Limit | Sample | Reference |
---|---|---|---|---|---|
GCE modified with reduced graphene oxide (rGO) and silver nanoparticles | chloramphenicol | amperometry | 2 nM | milk | [61] |
paraffin composite electrode with multi-walled carbon nanotubes (MWCNT) modified with antimony nanoparticles | sulfamethoxazole and trimethoprim | differential pulse voltammetry | 24 nmol L−1 (6.1 μg L−1) for sulfamethoxazole and 31 nmol L−1 (9.0 μg L−1) for trimethoprim | natural water | [48] |
GCE modified with platinum nanoparticles supported on carbon | tetracycline | differential pulse voltammetry | 4.28 μmol L−1 | urine | [62] |
CP modified with graphene and copper nanoparticles | gatifloxacin and perflocacin | differential pulse stripping voltammetry | 0.0021 μM and 0.0025 μM gatifloxacin and perflocacin, respectively | shrimp and chicken serum | [65] |
Glassy carbon electrode modified with graphene oxide decorated with Cu–Ag core–shell nanoparticles | sulfamethazine | square wave voltammetry | 0.46 μM | cow’s milk | [49] |
GCE modified with multi-walled carbon nanotube and gold nanoparticles | cefadroxil | amperometry | 0.22 μM | commercial capsules | [73] |
Benzene-sourced graphene–gold nanoparticle sensor | tetracycline | chronoamperometry | 0.16 μM | bulk | [76] |
Glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles | chloramphenicol | square wave voltammetry | 0.09 μM | shrimp | [69] |
MIP-modified carbon nanotube–gold nanoparticles electrode | tetracycline | CV and electrochemical impedance spectroscopy (EIS) | 0.04 mM | bulk | [67] |
GCE modified with reduced graphene and Ru nanoparticles | amoxicillin | pulse voltammetry | 1.63 nM | urine | [70] |
GCE with reduced graphene oxide modified with antimony and copper nanoparticles | levofloxacin | differential pulse voltammetry | 4.1 × 10−8 mol L−1 and 1.7 × 10−8 mol L−1 | pharmaceutical tablets | [71] |
screen-printed gold electrode modified with synthesized gold nanocube/cysteine | chloramphenicol | square wave voltammetry | 4.0 nM | human blood serum | [68] |
Poly(methylene green)–Ethaline deep eutectic solvent/Fe2O3 nanoparticle modified electrode | dapsone | Differential pulse voltammetry, scanning electron microscopy | 0.33 μM | pharmaceutical tablets and river water | [74] |
GCE modified with reduced graphene oxide and nanogold-functionalized poly(amidoamine) | ciprofloxacin | square wave voltammetry, different pulse voltammetry, chronoamperometry | 1 nM | raw milk | [77] |
CP electrode modified with gold nanoparticles | erythromycin ethylsuccinate (EES), azithromycin (AZI), clarithromycin (CLA), roxithromycin (ROX) | square wave voltammetry | 0.18, 0.045, 1.43, and 0.30 μg mL−1 for EES, AZI, CLA, and ROX | pharmaceutical preparations | [75] |
magnetic nanoparticles/MIP-based electrochemical sensor | tetracycline | square wave voltammetry | 1.5 × 10−7 mol L−1 | milk | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarakatsanou, C.; Karastogianni, S.; Girousi, S. Promising Electrode Surfaces, Modified with Nanoparticles, in the Sensitive and Selective Electroanalytical Determination of Antibiotics: A Review. Appl. Sci. 2023, 13, 5391. https://doi.org/10.3390/app13095391
Sarakatsanou C, Karastogianni S, Girousi S. Promising Electrode Surfaces, Modified with Nanoparticles, in the Sensitive and Selective Electroanalytical Determination of Antibiotics: A Review. Applied Sciences. 2023; 13(9):5391. https://doi.org/10.3390/app13095391
Chicago/Turabian StyleSarakatsanou, Christina, Sophia Karastogianni, and Stella Girousi. 2023. "Promising Electrode Surfaces, Modified with Nanoparticles, in the Sensitive and Selective Electroanalytical Determination of Antibiotics: A Review" Applied Sciences 13, no. 9: 5391. https://doi.org/10.3390/app13095391
APA StyleSarakatsanou, C., Karastogianni, S., & Girousi, S. (2023). Promising Electrode Surfaces, Modified with Nanoparticles, in the Sensitive and Selective Electroanalytical Determination of Antibiotics: A Review. Applied Sciences, 13(9), 5391. https://doi.org/10.3390/app13095391