Application of Fruit By-Products and Edible Film to Cookies: Antioxidant Activity and Concentration of Oxidized LDL Receptor in Women—A First Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Preparation of Cookies and Edible Films
2.2. Cookies and Edible Film Preparation
2.3. Determination of Proximate Composition of Cookies
2.4. In Vitro Starch Digestibility
2.5. Determination of Flavonoid Content and Antioxidant Activities
2.6. Determination of oxLDL
2.6.1. Subjects
2.6.2. Anthropometric and Biochemical Parameters
2.7. Data Analysis
3. Results and Discussion
3.1. Proximate Composition of Cookies
3.2. Baseline Characteristics
3.3. Oxidized LDL Receptor
3.4. Oxidized LDL Receptor and Waist Circumference
3.5. Oxidized LDL Receptor and Serum Iron
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DiNicolantonio, J.J.; Lucan, S.C.; O’Keefe, J.H. The evidence for saturated fat and for sugar related to coronary heart disease. Prog. Cardiovasc. Dis. 2016, 58, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circ. J. 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Leopold, J.A.; Loscalzo, J. Oxidative mechanisms and atherothrombotic cardiovascular disease. Drug Discov. 2008, 5, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Obermayer, G.; Afonyushkin, T.; Binder, C.J. Oxidized low-density lipoprotein in inflammation-driven thrombosis. J. Thromb. 2018, 16, 418–428. [Google Scholar] [CrossRef]
- Poznyak, V.A.; Nikiforov, G.N.; Markin, M.A.; Kashirskikh, A.D.; Myasoedova, A.V.; Gerasimova, V.E.; Orekhov, N.V. Overview of oxLDL and its impact on cardiovascular health: Focus on atherosclerosis. Front. Pharmacol. 2021, 11, 613780. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Marrugat, J.; Covas, M.I.; Fitó, M.; Schröder, H.; Miró-Casas, E.; Gimeno, E.; López-Sabater, M.C.; de la Torre, R.; Farré, M. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation. Eur. J. Nutr. 2004, 43, 140–147. [Google Scholar] [CrossRef]
- Li, S.H.; Zhao, P.; Tian, H.B.; Chen, L.H.; Cui, L.Q. Effect of grape polyphenols on blood pressure: A meta-analysis of randomized controlled trials. PLoS ONE 2015, 10, e0137665. [Google Scholar] [CrossRef]
- Jumar, A.; Schmieder, R.E. Cocoa flavanol cardiovascular effects beyond blood pressure reduction. J. Clin. Hypertens. 2016, 18, 352–358. [Google Scholar] [CrossRef]
- Cosmi, F.; Di Giulio, P.; Masson, S.; Finzi, A.; Marfisi, R.M.; Cosmi, D.; Scarano, M.; Tognoni, G.; Maggioni, A.P.; Porcu, M.; et al. Regular wine consumption in chronic heart failure impact on outcomes, quality of life, and circulating biomarkers. Circ. Heart Fail. 2015, 8, 428–437. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Medvidović-Kosanović, M.; Novak, I. Antioxidant activity and polyphenols of Aronia in comparison to other berry species. Agric. Conspec. Sci. 2007, 72, 301–306. [Google Scholar]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; Orsavová, J. Fruits of black chokeberry aronia melanocarpa in the prevention of chronic diseases. Molecules 2017, 22, 944. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 October 2022).
- Acan, B.G.; Kilicli, M.; Bursa, K.; Toker, O.S.; Palabiyik, I.; Gulcu, M.; Yaman, M.; Gunes, R.; Konar, N. Effect of grape pomace usage in chocolate spread formulation on textural, rheological and digestibility properties. LWT 2021, 138, 110451. [Google Scholar] [CrossRef]
- Vilela, A.; Cruz, I.; Oliveira, I.; Pinto, A.; Pinto, T. Sensory and nutraceutical properties of infusions prepared with grape pomace and edible-coated dried–minced grapes. Coatings 2022, 12, 443. [Google Scholar] [CrossRef]
- Lončarević, I.; Petrović, J.; Teslić, N.; Nikolić, I.; Maravić, N.; Pajin, B.; Pavlić, B. Cocoa spread with grape seed oil and encapsulated grape seed extract: Impact on physical properties, sensory characteristics and polyphenol content. Foods 2022, 11, 2730. [Google Scholar] [CrossRef]
- Molnar, D.; Novotni, D.; Krisch, J.; Bosiljkov, T.; Ščetar, M. The optimisation of biscuit formulation with grape and aronia pomace powders as cocoa substitutes. Croat. J. Food Technol. Biotechnol. Nutr. 2020, 15, 38–44. [Google Scholar] [CrossRef]
- Kumar, N. Polysaccharide-based component and their relevance in edible film/coating: A review. Nutr. Food Sci. 2019, 49, 793–823. [Google Scholar] [CrossRef]
- Molnar, D.; Novotni, D.; Kurek, M.; Galić, K.; Iveković, D.; Bionda, H.; Ščetar, M. Characteristics of edible films enriched with fruit by-products and their application on cookies. Food Hydrocoll. 2023, 135, 108191. [Google Scholar] [CrossRef]
- Mouzakitis, C.K.; Sereti, V.; Matsakidou, A.; Kotsiou, K.; Biliaderis, C.G.; Lazaridou, A. Physicochemical properties of zein-based edible films and coatings for extending wheat bread shelf life. Food Hydrocoll. 2022, 132, 107856. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). Approved Methods of the American Association of Cereal Chemists International, 11th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000; Available online: https://www.cerealsgrains.org/resources/Methods/Pages/default.aspx (accessed on 26 September 2022).
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: https://www.iso.org/standard/41320.html (accessed on 15 September 2022).
- ISO 6492:1999; Animal Feeding Stuffs—Determination of Fat Content. International Organization for Standardization: Geneva, Switzerland, 1999. Available online: https://www.iso.org/standard/12865.html (accessed on 15 September 2022).
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography Method. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/63503.html (accessed on 15 September 2022).
- EN 14084:2003; Foodstuffs. Determination of Trace Elements. Determination of Lead, Cadmium, Zinc, Copper and Iron by Atomic Absorption Spectrometry (AAS) after Microwave Digestion. European Standard: Plzen, Czech Republic, 2003. Available online: https://standards.iteh.ai/catalog/standards/cen/5a1ec234-434f-42a0-8447-b5c00aee9bae/en-14082-2003 (accessed on 4 October 2022).
- EN 15763:2010; Foodstuffs. Determination of Trace Elements. Determination of Arsenic, Cadmium, Mercury and Lead in Foodstuffs by Inductively Coupled Plasma Mass Spectrometry (ICP–MS) after Pressure Digestion. European Standard: Plzen, Czech Republic, 2010. Available online: https://standards.iteh.ai/catalog/standards/sist/44d9ee33-afaf-49df-b541-f6b4b28e97e6/sist-en-15763-2010 (accessed on 4 October 2022).
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar] [PubMed]
- Vujić, L.; Čepo, D.V.; Dragojević, I.V. Impact of dietetic tea biscuits formulation on starch digestibility and selected nutritional and sensory characteristics. LWT–Food Sci. Technol. 2014, 62, 647–653. [Google Scholar] [CrossRef]
- Babić, D.; Sindik, J.; Missoni, S. Development and validation of a self-administered food frequency questionnaire to assess habitual dietary intake and quality of diet in healthy adults in the Republic of Croatia. Coll. Antropol. 2014, 38, 1017–1026. Available online: https://hrcak.srce.hr/128218 (accessed on 4 April 2021).
- Garsetti, M.; Vinoy, S.; Lang, V.; Holt, S.; Loyer, S.; Brand-Miller, J.C. The glycemic and insulinemic index of plain sweet biscuits: Relationships to in vitro starch digestibility. J. Am. Coll. Nutr. 2005, 24, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Lim, H.S.; Lim, S.T. Effect of partial gelatinization and retrogradation on the enzymatic digestion of waxy rice starch. J. Cereal Sci. 2006, 43, 353–359. [Google Scholar] [CrossRef]
- Diao, Y.; Sia, X.; Shanga, W.; Zhoua, Z.; Wanga, Z.; Zhenga, P.; Strappeb, P.; Blanchard, C. Effect of interactions between starch and chitosan on waxy maize starch physicochemical and digestion properties. CYTA J. Food. 2017, 15, 327–335. [Google Scholar] [CrossRef]
- Bae, I.Y.; Oh, I.K.; Jung, D.S.; Lee, H.G. Influence of arabic gum on in vitro starch digestibility and noodle-making quality of segoami. Int. J. Biol. Macromol. 2019, 125, 668–673. [Google Scholar] [CrossRef]
- Liu, X.; Martin, D.A.; Valdez, J.C.; Sudakaran, S.; Rey, F.; Bolling, B.W. Aronia berry polyphenols have matrix-dependent effects on the gut microbiota. Food Chem. 2021, 359, 129831. [Google Scholar] [CrossRef]
- Cinquanta, L.; Di Cesare, C.; Manoni, R.; Piano, A.; Roberti, P.; Salvatori, G. Mineral essential elements for nutrition in different chocolate products. Int. J. Food Sci. Nutr. 2016, 67, 773–778. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape pomace valorization: A systematic review and meta-analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Steinberg, F.M.; Bearden, M.M.; Keen, C.L. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Diet. Assoc. 2003, 103, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Duran, H.; Yavuz, E.; Sismanoglu, T.; Senkal, B.F. Functionalization of gum arabic including glycoprotein and polysaccharides for the removal of boron. Carbohydr. Polym. 2019, 226, 115139. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef] [PubMed]
- Ayuda-Durán, B.; González-Manzano, S.; Gil-Sánchez, I.; Moreno-Arribas, M.V.; Bartolomé, B.; Sanz-Buenhombre, M.; Guadarrama, A.; Santos-Buelga, C.; González-Paramás, A.M. Antioxidant characterization and biological effects of grape pomace extracts supplementation in Caenorhabditis elegans. Foods 2019, 8, 75. [Google Scholar] [CrossRef]
- Todorovic, V.; Milenkovic, M.; Vidovic, B.; Todorovic, Z.; Sobajic, S. Correlation between antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalkalized cocoa powders. J. Food Sci. 2017, 82, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Stahl, L.; Miller, K.B.; Apgar, J.; Sweigart, D.S.; Stuart, D.A.; McHale, N.; Ou, B.; Kondo, M.; Hurst, W.J. Preservation of cocoa antioxidant activity, total polyphenols, flavan-3-ols, and procyanidin content in foods prepared with cocoa powder. J. Food Sci. 2009, 74, C456–C461. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, K.; Kuligowski, M.; Jasińska-Kuligowska, I.; Kidoń, M.; Siger, A.; Rudzińska, M.; Nowak, J. Effect of replacing cocoa powder by carob powder in the muffins on sensory and physicochemical properties. Plant Foods Hum. Nutr. 2018, 73, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Cádiz-Gurrea, M.L.; Borrás-Linares, I.; Lozano-Sánchez, J.; Joven, J.; Fernández-Arroyo, S.; Segura-Carretero, A. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins. Int. J. Mol. Sci. 2017, 18, 376. [Google Scholar] [CrossRef]
- Klein, K.M. Why Don’t I Look Like Her? The Impact of Social Media on Female Body Image. Senior Thesis, Claremont Colleges, Claremont, CA, USA, 2013. Available online: http://scholarship.claremont.edu/cmc_theses/720 (accessed on 10 November 2022).
- Pokimica, B.; García-Conesa, M.T.; Zec, M.; Debeljak-Martačić, J.; Ranković, S.; Vidović, N.; Petrović-Oggiano, G.; Konić-Ristić, A.; Glibetić, M. Chokeberry juice containing polyphenols does not affect cholesterol or blood pressure but modifies the composition of plasma phospholipids fatty acids in individuals at cardiovascular risk. Nutrients 2019, 11, 850. [Google Scholar] [CrossRef]
- Naruszewicz, M.; Łaniewska, I.; Millo, B.; Dłużniewski, M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007, 194, e179–e184. [Google Scholar] [CrossRef]
- Mateos, R.; Martínez-López, S.; Arévalo, G.B.; Amigo-Benavent, M.; Sarriá, B.; Bravo-Clemente, L. Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans. Food Chem. 2016, 205, 248–256. [Google Scholar] [CrossRef]
- Conterno, L.; Martinelli, F.; Tamburini, M.; Fava, F.; Mancini, A.; Sordo, M.; Conterno, L.; Martinelli, F.; Tamburini, M.; Fava, F.; et al. Measuring the impact of olive pomace enriched biscuits on the gut microbiota and its metabolic activity in mildly hypercholesterolaemic subjects. Eur. J. Nutr. 2019, 58, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Sikora, J.; Broncel, M.; Mikiciuk-Olasik, E. Aronia melanocarpa Elliot reduces the activity of angiotensin I-converting enzyme—In vitro and ex vivo studies. Oxid. Med. Cell. Longev. 2014, 2014, 739721. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Li, J.-Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2017, 37, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Jakovljevic, V.; Milic, P.; Bradic, J.; Jeremic, J.; Zivkovic, V.; Srejovic, I.; Nikolic Turnic, T.; Milosavljevic, I.; Jeremic, N.; Bolevich, S.; et al. Standardized Aronia melanocarpa extract as novel supplement against metabolic syndrome: A rat model. Int. J. Mol. Sci. 2018, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Broncel, M.; Kozirog, M.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Chojnowska-Jezierska, J. Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med. Sci. Monit. 2010, 16, CR28–CR34. [Google Scholar] [PubMed]
- Brouwers, A.; Langlois, M.; Delanghe, J.; Billiet, J.; De Buyzere, M.; Vercaemst, R.; Rietzschel, E.; Bernard, D.; Blaton, V. Oxidized low-density lipoprotein, iron stores, and haptoglobin polymorphism. Atherosclerosis 2004, 176, 189–195. [Google Scholar] [CrossRef]
- D’Amelio, P.; Cristofaro, M.A.; Tamone, C.; Morra, E.; Di Bella, S.; Isaia, G.; Grimaldi, A.; Gennero, L.; Gariboldi, A.; Ponzetto, A.; et al. Role of iron metabolism and oxidative damage in postmenopausal bone loss. Bone 2008, 43, 1010–1015. [Google Scholar] [CrossRef]
- Leiva, E.; Mujica, V.; Sepúlveda, P.; Guzmán, L.; Núñez, S.; Orrego, R.; Palomo, I.; Andrews, M.; Arredondo, M.A. High levels of iron status and oxidative stress in patients with metabolic syndrome. Biol. Trace Elem. Res. 2013, 151, 1–8. [Google Scholar] [CrossRef]
- Lesjak, M.; Hoque, R.; Balesaria, S.; Skinner, V.; Debnam, E.S.; Srai, S.K.S.; Sharp, P.A. Quercetin inhibits intestinal iron absorption and ferroprotein transporter expression in vivo and in vitro. PLoS ONE 2014, 9, e102900. [Google Scholar] [CrossRef]
Parameter | CC | GAP | GAP with KGAE |
---|---|---|---|
Total Fat (g/100 g) | 18.65 ± 0.17 a | 18.35 ± 0.16 a | 19.16 ± 0.08 b |
SFA (g/100 g) | 8.2 ± 0.08 a | 8.1 ± 0.08 a | 8.4 ± 0.04 b |
MUFA (g/100 g) | 6.6 ± 0.06 a | 6.5 ± 0.09 a | 6.8 ± 0.03 b |
PUFA (g/100 g) | 3.4 ± 0.03 a | 3.3 ± 0.05 b | 3.4 ± 0.01 a,b |
TS (% dry weight) | 39.99 ± 0.54 a | 42.69 ± 1.49 a | 41.96 ± 0.94 a |
RDS (% dry weight) | 17.63 ± 14.41 a | 18.63 ± 0.47 a,b | 21.06 ± 1.45 b |
SDS (% dry weight) | 21.46 ± 2.03 a | 21.40 ± 2.62 a | 19.02 ± 3.40 a |
RS (% dry weight) | 0.88 ± 0.43 a | 2.65 ± 1.45 a | 1.88 ± 1.87 a |
RAG (% dry weight) | 29.49 ± 1.23 a | 30.71 ± 0.47 a | 32.70 ± 1.82 a |
Free Glucose (% dry weight) | 9.89 ± 0.33 a | 10.01 ± 0.21 a | 9.30 ± 0.32 a |
Protein (g/100 g) | 10.1 ± 0.01 a | 8.9 ± 0.16 a | 9.3 ± 0.01 b |
Crude fiber (g/100 g) | 2.29 ± 0.06 a | 2.20 ± 0.01 a | 2.15 ± 0.05 a |
Minerals as ash (g/100 g dry weight) | 2.04 ± 0.18 a | 1.99 ± 0.11 a | 1.99 ± 0.17 a |
Iron (mg/kg) | 33 ± 2 b | 35 ± 1 a | 33 ± 2 b |
Calcium (mg/kg) | 60 ± 3 a | 59 ± 3 a | 52 ± 2 b |
Magnesium (mg/kg) | 326 ± 12 a | 292 ± 24 b | 239 ± 19 c |
Sodium (mg/kg) | 4206 ± 25 a | 3649 ± 31 b | 3376 ± 29 c |
Flavonoid (mmol rutin/100 g dry weight) | 0.145 ± 0.02 a | 0.139 ± 0.02 a | 0.177 ± 0.02 b |
FRAP (mmol Trolox/100 g dry weight) | 3.022 ± 0.11 c | 3.963 ± 0.03 b | 4.316 ± 0.21 a |
ABTS (mmol Trolox/100 g dry weight) | 11.47 ± 0.58 a | 13.88 ± 0.46 b | 14.58 ± 0.90 c |
DPPH (mmol Trolox/100 g dry weight) | 0.074 ± 0.01 a | 0.110 ± 0.01 b | 0.128 ± 0.01 c |
Parameter | Total | Control Group | Test Group | p |
---|---|---|---|---|
Age (years) median (range) (span) | 36 (23–60) | 36 (23–60) | 36 (25–46) | 0.200 * |
Chronic disease (N/total) | 6/25 | 2/12 | 4/13 | 0.645 ** |
Medicaments (N/total) | 7/25 | 2/12 | 5/13 | 0.378 ** |
Allergies (N/total) | 1/25 | 1/12 | 0/13 | 0.480 ** |
Alcohol consumption (N/total) | 13/25 | 4/12 | 9/13 | 0.115 ** |
Physical activity (N/total) | 16/25 | 5/12 | 11/13 | 0.041 ** |
Food supplements (N/total) | 10/25 | 2/12 | 8/13 | 0.041 ** |
BMI (kg/m2) (span) | 22.3 (19.6–24.5) | 22.1 (19.6–24.9) | 22.2 (19.1–24.5) | 0.957 * |
Waist circumference (cm) | 76 (68–86) | 77 (74–80) | 72 (67–87) | 0.869 |
Hip circumference (cm) | 98 (90–105) | 101 (87–105) | 96 (91–107) | 0.717 |
Waist-to-hip ratio | 0.77 (0.74–0.81) | 0.77 (0.75–0.80) | 0.78 (0.71–0.83) | 0.716 |
Blood glucose (mmol/L) | 5.0 (4.8–5.3) | 5.2 (5.0–5.3) | 5.0 (4.7–5.2) | 0.218 * |
Cholesterol (mmol/L) | 4.7 (4.2–5.2) | 4.6 (4.0–5.3) | 4.7 (4.4–5.1) | 0.604 * |
Cholesterol HDL (mmol/L) | 1.6 (1.5–1.7) | 1.5 (1.4–1.6) | 1.7 (1.6–1.7) | 0.029 * |
Cholesterol LDL (mmol/L) | 2.5 (2.3–3.1) | 2.5 (2.1–3.2) | 2.5 (2.3–2.9) | 0.849 * |
Triglycerides (mmol/L) | 0.8 (0.7–1.1) | 0.8 (0.7–1.3) | 0.8 (0.7–1.0) | 0.509 * |
Iron (Fe) (µmol/L) | 16 (11–20) | 13 (10–17) | 18 (11–24) | 0.210 * |
UIBC (µmol/L) | 41 (32–52) | 40 (34–50) | 41 (32–53) | 0.849 * |
TIBC (µmol/L) | 57 (53–63) | 55 (51–61) | 63 (53–65) | 0.126 * |
Fe saturation (%) | 27 (19–38) | 26 (18–32) | 35 (19–39) | 0.369 * |
Parameter | Total | Control Group | Test Group | p (Control vs. Test Group) |
---|---|---|---|---|
oxLDL receptor (0 h) (ng/mL) | 0.29 (0.18–0.47) | 0.29 (0.19–0.52) | 0.29 (0.18–0.47) | 0.765 * |
oxLDL receptor (after 2 h) (ng/mL) | 0.42 (0.25–0.48) | 0.37 (0.24–0.45) | 0.45 (0.30–0.60) | 0.276 * |
p (0 vs. 2 h) | 0.753 ** | 0.917 ** | ||
oxLDL receptor (after 10 days) (ng/mL) (ng/mL) | 0.42 (0.27–0.46) | 0.43 (0.24–0.45) | 0.37 (0.27–0.50) | 0.744 * |
p (0 vs. 10 days) | 0.583 ** | 1.000 ** | ||
p (2 h vs. 10 days) | 0.480 ** | 0.600 ** |
Control Group | Test Group | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Age | 1.02 | 0.92–1.14 | 0.684 | 0.85 | 0.63–1.14 | 0.276 |
Chronic disease | 2.33 | 0.11–50.99 | 0.590 | 0.42 | 0.03–5.71 | 0.512 |
Medications | - | - | 0.997 | 0.25 | 0.02–3.34 | 0.295 |
Alcohol | 2.27 | 0.55–9.35 | 0.255 | 0.94 | 0.27–3.28 | 0.922 |
Physical activity | 1.67 | 0.15–18.88 | 0.680 | 0.57 | 0.03–11.85 | 0.718 |
Food supplementation | - | - | 0.998 | 0.22 | 0.02–2.45 | 0.219 |
BMI (kg/m2) | 1.11 | 0.73–1.69 | 0.613 | 0.76 | 0.50–1.17 | 0.212 |
Waist circumferences (cm) | 0.94 | 0.80–1.11 | 0.464 | 0.94 | 0.82–1.07 | 0.316 |
Hip circumferences(cm) | 0.97 | 0.84–1.10 | 0.607 | 0.91 | 0.77–1.06 | 0.23 |
WHR | - | - | 0.549 | - | - | 0.620 |
Glucose (mmol/L) | 0.13 | 0.00–5.32 | 0.280 | 21.35 | 0.36–1252.45 | 0.141 |
Cholesterol (mmol/L) | 2.16 | 0.59–7.94 | 0.246 | 2.44 | 0.21–28.26 | 0.476 |
Cholesterol HDL (mmol/L) | 11.22 | 0.01–12,329.25 | 0.499 | 0.50 | 0.00–95.95 | 0.795 |
Cholesterol LDL (mmol/L) | 2.27 | 0.50–10.33 | 0.287 | 3.17 | 0.26–38.37 | 0.365 |
Triglycerides (mmol/L) | 5.32 | 0.12–229.97 | 0.384 | 0.88 | 0.03–22.34 | 0.940 |
Iron (µmol/L) | 1.10 | 0.87–1.39 | 0.401 | 1.05 | 0.89–1.24 | 0.593 |
UIBC (µmol/L) | 0.86 | 0.70–1.05 | 0.139 | 0.98 | 0.88–1.09 | 0.711 |
TIBC (µmol/L) | 0.81 | 0.61–1.08 | 0.145 | 0.99 | 0.86–1.15 | 0.964 |
Fe saturation (%) | 1.08 | 0.94–1.24 | 0.264 | 1.03 | 0.94–1.13 | 0.553 |
Parameter | oxLDL Receptor (2 h) | oxLDL Receptor (10 d) | ||||||
---|---|---|---|---|---|---|---|---|
Control Group | Test Group | Control Group | Test Group | |||||
r * | p | r * | p | r * | p | r * | p | |
Age | −0.25 | 0.443 | −0.43 | 0.141 | 0.05 | 0.880 | 0.29 | 0.336 |
Body mass index (kg/m2) | −0.14 | 0.665 | −0.11 | 0.734 | −0.42 | 0.176 | 0.48 | 0.094 |
Waist circumference (cm) | −0.18 | 0.614 | −0.13 | 0.680 | −0.67 | 0.034 | 0.31 | 0.336 |
Hip circumference (cm) | −0.34 | 0.334 | −0.25 | 0.429 | −0.31 | 0.390 | 0.25 | 0.436 |
Waist-to-hip ratio | −0.12 | 0.748 | 0 | 0.983 | −0.60 | 0.068 | 0.39 | 0.216 |
Parameters | oxLDL Receptor (2 h) | oxLDL Receptor (10 Days) | ||||||
---|---|---|---|---|---|---|---|---|
Control Group | Test Group | Control Group | Test Group | |||||
r * | p | r * | p | r * | p | r * | p | |
Glucose (mmol/L) | −0.15 | 0.637 | 0.52 | 0.067 | −0.33 | 0.294 | −0.23 | 0.443 |
Cholesterol (mmol/L) | 0.33 | 0.290 | −0.22 | 0.472 | 0.13 | 0.678 | −0.03 | 0.921 |
Cholesterol HDL (mmol/L) | 0.40 | 0.197 | 0.08 | 0.784 | 0.30 | 0.352 | 0.22 | 0.473 |
Cholesterol LDL (mmol/L) | 0.33 | 0.296 | −0.17 | 0.579 | 0.19 | 0.554 | 0.04 | 0.886 |
Triglycerides (mmol/L) | −0.25 | 0.429 | 0.15 | 0.618 | 0.21 | 0.518 | −0.01 | 0.964 |
Iron (Fe) (µmol/L) | 0.25 | 0.434 | 0.08 | 0.788 | 0.69 | 0.012 | −0.62 | 0.022 |
UIBC (µmol/L) | −0.23 | 0.476 | −0.19 | 0.530 | −0.47 | 0.121 | 0.23 | 0.452 |
TIBC (µmol/L) | −0.31 | 0.331 | −0.39 | 0.193 | −0.02 | 0.948 | −0.28 | 0.356 |
Fe saturation (%) | 0.29 | 0.358 | 0.04 | 0.897 | 0.61 | 0.037 | −0.47 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnar, D.; Nikolac Gabaj, N.; Vujić, L.; Ščetar, M.; Krisch, J.; Miler, M.; Štefanović, M.; Novotni, D. Application of Fruit By-Products and Edible Film to Cookies: Antioxidant Activity and Concentration of Oxidized LDL Receptor in Women—A First Approach. Appl. Sci. 2023, 13, 5513. https://doi.org/10.3390/app13095513
Molnar D, Nikolac Gabaj N, Vujić L, Ščetar M, Krisch J, Miler M, Štefanović M, Novotni D. Application of Fruit By-Products and Edible Film to Cookies: Antioxidant Activity and Concentration of Oxidized LDL Receptor in Women—A First Approach. Applied Sciences. 2023; 13(9):5513. https://doi.org/10.3390/app13095513
Chicago/Turabian StyleMolnar, Dunja, Nora Nikolac Gabaj, Lovorka Vujić, Mario Ščetar, Judit Krisch, Marijana Miler, Mario Štefanović, and Dubravka Novotni. 2023. "Application of Fruit By-Products and Edible Film to Cookies: Antioxidant Activity and Concentration of Oxidized LDL Receptor in Women—A First Approach" Applied Sciences 13, no. 9: 5513. https://doi.org/10.3390/app13095513
APA StyleMolnar, D., Nikolac Gabaj, N., Vujić, L., Ščetar, M., Krisch, J., Miler, M., Štefanović, M., & Novotni, D. (2023). Application of Fruit By-Products and Edible Film to Cookies: Antioxidant Activity and Concentration of Oxidized LDL Receptor in Women—A First Approach. Applied Sciences, 13(9), 5513. https://doi.org/10.3390/app13095513