Recognition of Driving Behavior in Electric Vehicle’s Li-Ion Battery Aging
Abstract
:1. Introduction
- Analysis of the methods for classifying the driving behavior in an explainable form with conventional and deep learning methods;
- Summary of the battery degradation process and factors caused by BEVs and clarification of the ambiguous definitions of current expert driving or labeling data;
- Overview of the fine-time granularity BEVs data that are publicly accessible.
2. Battery Degradation Mechanism
Degradation Caused by BEVs
3. The Recognition of Driving Behavior
3.1. The EV Dataset
3.2. Conventional Driving Behavior Recognition
3.2.1. Hidden Markov Model (HMM)
3.2.2. Gaussian Mixture Model (GMM)
3.2.3. Support Vector Machine (SVM)
3.2.4. Naive Bayes (NB)
3.2.5. Fuzzy Logic (FL)
3.2.6. K-Nearest Neighbour (KNN)
3.3. Deep Learning Driving Behavior Recognition
3.3.1. Recurrent Neural Network (RNN)
3.3.2. Convolutional Neural Network (CNN)
3.3.3. Fusion Models
4. Summaries and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yu, Y.; Huang, K.; Tang, B. From the Perspective of Battery Production: Energy–Environment–Economy (3E) Analysis of Lithium-Ion Batteries in China. Sustainability 2019, 11, 6941. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Pedersen, K.; Stroe, D.I. Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview. Energies 2021, 14, 5220. [Google Scholar] [CrossRef]
- Yao, L.; Xu, S.; Tang, A.; Zhou, F.; Hou, J.; Xiao, Y.; Fu, Z. A review of lithium-ion battery state of health estimation and prediction methods. World Electr. Veh. J. 2021, 12, 113. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.; Lipu, M.H.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Noura, N.; Boulon, L.; Jemeï, S. A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges. World Electr. Veh. J. 2020, 11, 66. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Han, J.; Xiang, H.; Li, H.; Zhang, Y.; Li, S. A Recognition Method of Aggressive Driving Behavior Based on Ensemble Learning. Sensors 2022, 22, 644. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Fu, T.; Gong, H.; Sobhani, A. Aggressive driving behavior prediction considering driver’s intention based on multivariate-temporal feature data. Accid. Anal. Prev. 2022, 164, 106477. [Google Scholar] [CrossRef]
- Lee, K.W.; Yoon, H.S.; Song, J.M.; Park, K.R. Convolutional neural network-based classification of driver’s emotion during aggressive and smooth driving using multi-modal camera sensors. Sensors 2018, 18, 957. [Google Scholar] [CrossRef]
- Tran, D.; Sheng, W.; Liu, L.; Liu, M. A Hidden Markov Model based driver intention prediction system. In Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, 8–12 June 2015; pp. 115–120. [Google Scholar]
- Liu, P.; Kurt, A.; Özgüner, Ü. Trajectory prediction of a lane changing vehicle based on driver behavior estimation and classification. In Proceedings of the 17th international IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 942–947. [Google Scholar]
- Fine, S.; Singer, Y.; Tishby, N. The hierarchical hidden Markov model: Analysis and applications. Mach. Learn. 1998, 32, 41–62. [Google Scholar] [CrossRef]
- He, L.; Zong, C.f.; Wang, C. Driving intention recognition and behaviour prediction based on a double-layer hidden Markov model. J. Zhejiang Univ. Sci. C 2012, 13, 208–217. [Google Scholar] [CrossRef]
- Zhu, T.; Khajepour, A.; Zong, C.; Mai, L.; Deng, H. Driving condition identification based on HHMM model–Application to the simulation of heavy duty vehicle. In The Dynamics of Vehicles on Roads and Tracks; CRC Press: Boca Raton, FL, USA, 2016; pp. 670–675. [Google Scholar]
- Abe, K.; Miyatake, H.; Oguri, K. A study on switching AR-HMM driving behavior model depending on driver’s states. In Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, Bellevue, WA, USA, 30 September–3 October 2007; pp. 806–811. [Google Scholar]
- Miyajima, C.; Nishiwaki, Y.; Ozawa, K.; Wakita, T.; Itou, K.; Takeda, K.; Itakura, F. Driver modeling based on driving behavior and its evaluation in driver identification. Proc. IEEE 2007, 95, 427–437. [Google Scholar] [CrossRef]
- Carmona, J.; Miguel, M.A.D.; Martin, D.; Garcia, F.; Escalera, A.D.L. Embedded System for Driver Behavior Analysis Based on GMM. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; Volume 8, pp. 61–65. [Google Scholar] [CrossRef]
- Shakib, M.N.; Shamim, M.; Shawon, M.N.H.; Isha, M.K.F.; Hashem, M.M.; Kamal, M.A. An Adaptive System for Detecting Driving Abnormality of Individual Drivers Using Gaussian Mixture Model. In Proceedings of the 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 18–20 November 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Putri, R.R.M.; Yang, C.H.; Chang, C.C.; Liang, D. Smartwatch-Based Open-Set Driver Identification by Using GMM-Based Behavior Modeling Approach. IEEE Sens. J. 2021, 21, 4918–4926. [Google Scholar] [CrossRef]
- Song, X.; Yin, Y.; Cao, H.; Zhao, S.; Li, M.; Yi, B. The mediating effect of driver characteristics on risky driving behaviors moderated by gender, and the classification model of driver’s driving risk. Accid. Anal. Prev. 2021, 153, 106038. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Q.; Zhao, X. Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. Int. J. Distrib. Sens. Netw. 2017, 13. [Google Scholar] [CrossRef]
- Wang, H.; Gu, M.; Wu, S.; Wang, C. A driver’s car-following behavior prediction model based on multi-sensors data. Eurasip J. Wirel. Commun. Netw. 2020, 2020, 10. [Google Scholar] [CrossRef]
- Abe, S. Analysis of multiclass support vector machines. Thyroid 2003, 21, 3772. [Google Scholar]
- Bin, Z.; Yong, L.; Shao-Wei, X. Support vector machine and its application in handwritten numeral recognition. In Proceedings of the Proceedings 15th International Conference on Pattern Recognition, ICPR-2000, Barcelona, Spain, 3–7 September 2000; Volume 2, pp. 720–723. [Google Scholar]
- Amsalu, S.B.; Homaifar, A.; Afghah, F.; Ramyar, S.; Kurt, A. Driver behavior modeling near intersections using support vector machines based on statistical feature extraction. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2015; Volume 8, pp. 1270–1275. [Google Scholar] [CrossRef]
- Yang, K.; Haddad, C.A.; Yannis, G.; Antoniou, C. Driving behavior safety levels: Classification and evaluation. In Proceedings of the 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Heraklion, Greece, 16–17 June 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021; Volume 6. [Google Scholar] [CrossRef]
- Wang, W.; Xi, J.; Chong, A.; Li, L. Driving Style Classification Using a Semisupervised Support Vector Machine. IEEE Trans. Hum.-Mach. Syst. 2017, 47, 650–660. [Google Scholar] [CrossRef]
- Syakur, M.; Khotimah, B.; Rochman, E.; Satoto, B.D. Integration k-means clustering method and elbow method for identification of the best customer profile cluster. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. [Google Scholar] [CrossRef]
- Bouslimi, W.; Kassaagi, M.; Lourdeaux, D.; Fuchs, P. Augmented Naïve Bayesian network for driver behavior modeling. In Proceedings of the IEEE Proceedings. Intelligent Vehicles Symposium, Las Vegas, NV, USA, 6–8 June 2005; Volume 2005, pp. 236–242. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, J.; An, J.; Yang, Y. Abnormal driving behavior detection for bus based on the Bayesian classifier. In Proceedings of the 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, 29–31 March 2018; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; Volume 6, pp. 266–272. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, J.; Zhu, Y.; Chen, Y.; Li, M. D3: Abnormal driving behaviors detection and identification using smartphone sensors. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Seattle, WA, USA, 22–25 June 2015; pp. 524–532. [Google Scholar]
- Tang, J.; Liu, F.; Zhang, W.; Ke, R.; Zou, Y. Lane-changes prediction based on adaptive fuzzy neural network. Expert Syst. Appl. 2018, 91, 452–463. [Google Scholar] [CrossRef]
- Deng, Q.; Söffker, D. Improved driving behaviors prediction based on fuzzy logic-hidden markov model (fl-hmm). In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 2003–2008. [Google Scholar]
- Fernandez, S.; Ito, T. Driver classification for intelligent transportation systems using fuzzy logic. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; Volume 12, pp. 1212–1216. [Google Scholar] [CrossRef]
- Quintero, M.C.G.; López, J.O.; Pinilla, A.C.C. Driver behavior classification model based on an intelligent driving diagnosis system. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 894–899. [Google Scholar]
- Li, D.C.; Lin, M.Y.C.; Chou, L.D. Macroscopic Big Data Analysis and Prediction of Driving Behavior with an Adaptive Fuzzy Recurrent Neural Network on the Internet of Vehicles. IEEE Access 2022, 10, 47881–47895. [Google Scholar] [CrossRef]
- Eftekhari, H.R.; Ghatee, M. Hybrid of discrete wavelet transform and adaptive neuro fuzzy inference system for overall driving behavior recognition. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 782–796. [Google Scholar] [CrossRef]
- Cunningham, P.; Delany, S.J. k-Nearest neighbour classifiers-A Tutorial. ACM Comput. Surv. (CSUR) 2021, 54, 1–25. [Google Scholar] [CrossRef]
- Karri, S.L.; Silva, L.C.D.; Lai, D.T.C.; Yong, S.Y. Classification and Prediction of Driving Behaviour at a Traffic Intersection Using SVM and KNN. SN Comput. Sci. 2021, 2, 209. [Google Scholar] [CrossRef]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A brief review of nearest neighbor algorithm for learning and classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for knn classification. ACM Trans. Intell. Syst. Technol. 2017, 8, 1–19. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Azadani, M.N.; Boukerche, A. Performance evaluation of driving behavior identification models through can-bus data. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional Neural Networks for human activity recognition using mobile sensors. In Proceedings of the 6th International Conference on Mobile Computing, Applications and Services, Austin, TX, USA, 6–7 November 2014; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2015; Volume 1, pp. 197–205. [Google Scholar] [CrossRef]
- Singh, B.; Davis, L.S. An Analysis of Scale Invariance in Object Detection—SNIP. arXiv 2017, arXiv:1711.08189. [Google Scholar]
- Shahverdy, M.; Fathy, M.; Berangi, R.; Sabokrou, M. Driver behavior detection and classification using deep convolutional neural networks. Expert Syst. Appl. 2020, 149, 113240. [Google Scholar] [CrossRef]
- McGehee, D.V.; Mazzae, E.N.; Baldwin, G.S. Driver reaction time in crash avoidance research: Validation of a driving simulator study on a test track. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; Sage Publications Sage CA: Los Angeles, CA, USA, 2000; Volume 44, pp. 3–320. [Google Scholar]
- Azadani, M.N.; Boukerche, A. Siamese temporal convolutional networks for driver identification using driver steering behavior analysis. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18076–18087. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Kadri, N.; Ellouze, A.; Ksantini, M.; Turki, S.H. New LSTM Deep Learning Algorithm for Driving Behavior Classification. Cybern. Syst. 2022, 54, 387–405. [Google Scholar] [CrossRef]
- Mumcuoglu, M.E.; Alcan, G.; Unel, M.; Cicek, O.; Mutluergil, M.; Yilmaz, M.; Koprubasi, K. Driving behavior classification using long short term memory networks. In Proceedings of the 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 2–4 July 2019; pp. 1–6. [Google Scholar]
- Saleh, K.; Hossny, M.; Nahavandi, S. Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar]
- Jiang, Y.H.; Yu, Y.F.; Huang, J.Q.; Cai, W.W.; Marco, J. Li-ion battery temperature estimation based on recurrent neural networks. Sci. China Technol. Sci. 2021, 64, 1335–1344. [Google Scholar] [CrossRef]
- Khalid, A.; Sundararajan, A.; Acharya, I.; Sarwat, A.I. Prediction of li-ion battery state of charge using multilayer perceptron and long short-term memory models. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; pp. 1–6. [Google Scholar]
- Sun, H.; Yang, D.; Du, J.; Li, P.; Wang, K. Prediction of Li-ion battery state of health based on data-driven algorithm. Energy Rep. 2022, 8, 442–449. [Google Scholar] [CrossRef]
- Lin, J.; Yan, G.; Wang, C. Li-ion battery state of health prediction based on long short-term memory recurrent neural network. J. Phys. Conf. Ser. 2010, 2010, 012133. [Google Scholar] [CrossRef]
- Yayan, U.; Arslan, A.T.; Yucel, H. A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data. Appl. Artif. Intell. 2021, 35, 421–439. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Liu, Z. A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction. In Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–4. [Google Scholar]
- Wang, Z.; Liu, N.; Guo, Y. Adaptive sliding window LSTM NN based RUL prediction for lithium-ion batteries integrating LTSA feature reconstruction. Neurocomputing 2021, 466, 178–189. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, H.; Han, Q.; Tang, Y.; Ye, L.; Wu, Y.; Zu, H. An LSTM-based driving operation suggestion method for riding comfort-oriented critical zone. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 755–771. [Google Scholar] [CrossRef]
- Xing, Y.; Lv, C.; Mo, X.; Hu, Z.; Huang, C.; Hang, P. Toward Safe and Smart Mobility: Energy-Aware Deep Learning for Driving Behavior Analysis and Prediction of Connected Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4267–4280. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Zhang, L. Recognition method of abnormal driving behavior using the bidirectional gated recurrent unit and convolutional neural network. Phys. A Stat. Mech. Its Appl. 2023, 609, 128317. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.C.; Li, F.; Xie, C.; Ren, T.; Chen, J.; Liu, L. A deep learning framework for driving behavior identification on in-vehicle CAN-BUS sensor data. Sensors 2019, 19, 1356. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.; Li, F.; Luo, J.; Ren, T.; Hu, S.; Li, W.; Li, W. Attention-Based Convolutional and Recurrent Neural Networks for Driving Behavior Recognition Using Smartphone Sensor Data. IEEE Access 2019, 7, 148031–148046. [Google Scholar] [CrossRef]
- Dos Reis, G.; Strange, C.; Yadav, M.; Li, S. Lithium-ion battery data and where to find it. Energy AI 2021, 5, 100081. [Google Scholar] [CrossRef]
- Aguiari, D.; Chou, K.S.; Tse, R.; Pau, G. Monitoring electric vehicles on the go. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 885–888. [Google Scholar]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Mayyas, A.; Steward, D.; Mann, M. The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustain. Mater. Technol. 2019, 19, e00087. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, F.; Liu, B.; Zhou, H.; Zhang, Q.; Kong, J.; Wang, Q. Progress in preparation and modification of LiNi0.6Mn0.2Co0.2O2 cathode material for high energy density Li-ion batteries. Int. J. Electrochem. 2018, 2018, 6930386. [Google Scholar] [CrossRef]
- Qi, X.; Liu, B.; Pang, J.; Yun, F.; Wang, R.; Cui, Y.; Wang, C.; Doyle-Davis, K.; Xing, C.; Fang, S.; et al. Unveiling micro internal short circuit mechanism in a 60 Ah high-energy-density Li-ion pouch cell. Nano Energy 2021, 84, 105908. [Google Scholar] [CrossRef]
- Qi, X.; Liu, B.; Yun, F.; Wang, C.; Wang, R.; Pang, J.; Tang, H.; Quan, W.; Zhang, Q.; Yang, M.; et al. Probing heat generation and release in a 57.5 A h high-energy-density Li-ion pouch cell with a nickel-rich cathode and SiOx/graphite anode. J. Mater. Chem. A 2022, 10, 1227–1235. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the art of lithium-ion battery SOC estimation for electrical vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef]
- Zhao, Y.; Patel, Y.; Hunt, I.A.; Kareh, K.M.; Holland, A.A.; Korte, C.; Dear, J.P.; Yue, Y.; Offer, G.J. Preventing lithium ion battery failure during high temperatures by externally applied compression. J. Energy Storage 2017, 13, 296–303. [Google Scholar] [CrossRef]
- An, S.J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D.L., III. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52–76. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Ramesh, R.; Kumar, T.P. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414. [Google Scholar] [CrossRef]
- Dollé, M.; Sannier, L.; Beaudoin, B.; Trentin, M.; Tarascon, J.M. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem. Solid-State Lett. 2002, 5, A286. [Google Scholar] [CrossRef]
- Lin, X.; Khosravinia, K.; Hu, X.; Li, J.; Lu, W. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Prog. Energy Combust. Sci. 2021, 87, 100953. [Google Scholar] [CrossRef]
- Reddy, M.V.; Mauger, A.; Julien, C.M.; Paolella, A.; Zaghib, K. Brief History of Early Lithium-Battery Development. Materials 2020, 13, 1884. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J.; Novák, P.; Wagner, M.; Veit, C.; Möller, K.C.; Besenhard, J.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J.G.; Wang, C.M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101. [Google Scholar] [CrossRef]
- Yang, R.; Mei, L.; Zhang, Q.; Fan, Y.; Shin, H.S.; Voiry, D.; Zeng, Z. High-yield production of mono-or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 2022, 17, 358–377. [Google Scholar] [CrossRef]
- Jie, Y.; Ren, X.; Cao, R.; Cai, W.; Jiao, S. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv. Funct. Mater. 2020, 30, 1910777. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Zhao, Q.; Liu, X.; Zheng, J.; Stalin, S.; Zhang, Q.; Archer, L.A. Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv. Mater. 2020, 32, 1905629. [Google Scholar] [CrossRef]
- Ramkumar, M.S.; Reddy, C.; Ramakrishnan, A.; Raja, K.; Pushpa, S.; Jose, S.; Jayakumar, M. Review on Li-Ion Battery with Battery Management System in Electrical Vehicle. Adv. Mater. Sci. Eng. 2022, 2022, 3379574. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, K.; Sun, J.; Zhao, K.; Dai, J.; Wang, K. Overview of electric vehicle battery management system algorithms. In Proceedings of the 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), Guilin, China, 25 April 2022; p. 109. [Google Scholar] [CrossRef]
- Yang, H.; Zhuang, G.V.; Ross, P.N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources 2006, 161, 573–579. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Campion, C.L.; Li, W.; Lucht, B.L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2327. [Google Scholar] [CrossRef]
- Rowden, B.; Garcia-Araez, N. A review of gas evolution in lithium ion batteries. Energy Rep. 2020, 6, 10–18. [Google Scholar] [CrossRef]
- Chou, K.S.; Aguiari, D.; Tse, R.; Tang, S.K.; Pau, G. Impact Evaluation of Driving Style on Electric Vehicle Battery based on Field Testing Result. In Proceedings of the 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2023; pp. 1143–1146. [Google Scholar]
- Zhao, J.; Burke, A.F. Electric Vehicle Batteries: Status and Perspectives of Data-Driven Diagnosis and Prognosis. Batteries 2022, 8, 142. [Google Scholar] [CrossRef]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries–A Post-Mortem study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Safdari, M.; Ahmadi, R.; Sadeghzadeh, S. Numerical and experimental investigation on electric vehicles battery thermal management under New European Driving Cycle. Appl. Energy 2022, 315, 119026. [Google Scholar] [CrossRef]
- Ben-Marzouk, M.; Pelissier, S.; Clerc, G.; Sari, A.; Venet, P. Generation of a Real-Life Battery Usage Pattern for Electrical Vehicle Application and Aging Comparison with the WLTC Profile. IEEE Trans. Veh. Technol. 2021, 70, 5618–5627. [Google Scholar] [CrossRef]
- Kwak, B.I.; Woo, J.; Kim, H.K. Know your master: Driver Profiling-based Anti-theft method. In Proceedings of the 2016 14th Annual Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, 12–14 December 2016. [Google Scholar]
- Oh, G.; Leblanc, D.J.; Peng, H. Vehicle energy dataset (ved), a large-scale dataset for vehicle energy consumption research. IEEE Trans. Intell. Transp. Syst. 2020, 23, 3302–3312. [Google Scholar] [CrossRef]
- Steinstraeter, M.; Buberger, J.; Trifonov, D. Battery and heating data in real driving cycles. IEEE Dataport 2020. [Google Scholar] [CrossRef]
- Petneházi, G. Recurrent neural networks for time series forecasting. arXiv 2019, arXiv:1901.00069. [Google Scholar]
- Faouzi, J. Data Set of Recurrence Plots—Pyts 0.12.0 Documentation. 2017. Available online: https://pyts.readthedocs.io/en/stable/auto_examples/image/plot_dataset_rp.html (accessed on 25 March 2023).
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
Processes | Caused by | Consequence |
---|---|---|
SEI film [72] | High DOD or high idling SOC | Li-ion consumed and increased thickness, loss capacity directly; easy to corrode and react with electrolyte in the long term; |
Dendrites growth [75] | High DOD, SOC, or low temperature | Disorder of the material structure and pieces of the separator, which results in short circuits and thermal runaway |
Lithium plating [76] | High SOC or low temperature | Reduction of Li-ion which results in dead lithium and second SEI film irreversibly |
Processes | Caused by | Consequence |
---|---|---|
Phase transition [78] | High current rate | Irreversible disorder of the cathode structure |
Cracking in particles [79] | Long term high voltage or high current | Obstructing Li-ion diffusion, powdering, and collapse of cathode |
TMD [80] | High temperature, voltage at high SOC level | Manganese reacts with organic solvents and produces hydrogen fluoride (HF) which will dissolve the transition metals and Li-ions on the surface of the cathode |
CEI film [81] | High voltage at high SOC | Li-ions are lost via an interaction with electrolytes that is analogous to the SEI film |
Binder decomposition and Collector dissolution [82] | High temperature | An unstable anode structure leads to a loss of electrode contact |
Processes | Caused by | Consequence |
---|---|---|
Electrolyte decomposition [87] | High voltage and SOC | Erode cathode and produce more CEI ingredients |
Gas formation [88] | High temperature, voltage, and SOC | An increase of pressure inside the battery by the gas (H2, CH4, CO2, CO) can result in fire and explosion of the battery |
Dataset | Access | No. of Features | Sampling Rate | Battery Info. | Labels |
---|---|---|---|---|---|
[94] | HCRL | 54 | 1 s | - | Driver |
[95] | VED | 22 | 1 s | SOC, A, V | Trip |
[96] | Battery and Heat in R.D.C. | 28 | 0.1 s | A, V, C | - |
[89] | Nissan Leaf | 31 | 0.25 s | SOC, SOH, A, V, C | Driver and Trip |
Category | Methods | Used Features | Recognition Level | Data Window | Accuracy |
---|---|---|---|---|---|
HMM | HMM [9] | Steering, gas, and brake * | Driving action | 0.3–5.2 s | 82–90% |
HHMM [12] | CAN data * | Sequence of driving state | 2–5.5 s | 93–99.85% | |
AR-HMM [14] | Speed, pedal stroke * | Driving state | 0.1 s | - | |
GMM | GMM [15,16] | Following distance, all CAN data, GPS *,† | Driving action | 0.8–20 s | 72.9–92.65% |
GMM-Fusion [18] | IMU * | Driving action, sequence of driving action | Entire trip | - | |
SVM | SVM [21] | Radar, video, GPS, CAN data † | Single event | 10 s | 80.8% |
SVM-hybird [24] | CAN data, GPS † | Driving action | 0.1 s | 97% | |
S3VM [26] | Steering, acceleration, brake, gear * | Driving style | instant | 86.6% | |
FL | FL-variant [36] | IMU † | Driving style | 0.5 s | 92% |
KNN | KNN [38] | Brake, GPS, throttle, traffic light * | Single event | 0.1s | 90.1% |
RNN | LSTM [50] | IMU, CAN data * | Driver identification | 30 s | 74.7–82.3% |
Stacked-LSTM [49,51] | IMU, GPS, camera *,† | Driving style | 6.4 s | 86–96% | |
CNN | CNN [42] | CAN data † | Driver identification | 100 s | 96.85% |
CNN image transform [45] | CAN data † | Driving style | 20 s | 83.8–99% | |
Fusion | CNN-LSTM-Attention [63] | IMU, GPS † | Driving action and state | 1 s | 95.85% |
CNN-RNN-Attention [62] | CAN data † | Driver identification | 60 s | 97–98.4% | |
CNN-BiGRU [61] | CAN data, GPS, Driver † | Driving style | 3 s | 97.33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, K.S.; Wong, K.L.; Aguiari, D.; Tse, R.; Tang, S.-K.; Pau, G. Recognition of Driving Behavior in Electric Vehicle’s Li-Ion Battery Aging. Appl. Sci. 2023, 13, 5608. https://doi.org/10.3390/app13095608
Chou KS, Wong KL, Aguiari D, Tse R, Tang S-K, Pau G. Recognition of Driving Behavior in Electric Vehicle’s Li-Ion Battery Aging. Applied Sciences. 2023; 13(9):5608. https://doi.org/10.3390/app13095608
Chicago/Turabian StyleChou, Ka Seng, Kei Long Wong, Davide Aguiari, Rita Tse, Su-Kit Tang, and Giovanni Pau. 2023. "Recognition of Driving Behavior in Electric Vehicle’s Li-Ion Battery Aging" Applied Sciences 13, no. 9: 5608. https://doi.org/10.3390/app13095608
APA StyleChou, K. S., Wong, K. L., Aguiari, D., Tse, R., Tang, S. -K., & Pau, G. (2023). Recognition of Driving Behavior in Electric Vehicle’s Li-Ion Battery Aging. Applied Sciences, 13(9), 5608. https://doi.org/10.3390/app13095608