Comparison of Ultra-Sonication and Microwave Extraction Followed by Filtration or Filtration and Solid-Phase Extraction Clean-Up for PAH Determination from Sediment and Sludge: Human Health and Ecological Risk Assessment
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Preparation of Calibration Standards
2.4. Sampling of Sediments and Sludge Samples
2.5. Optimization of UE
2.6. Optimization of MAE
2.7. Methods Validation (Quality Assurance)
3. Results and Discussion
3.1. Optimization of UE
3.1.1. Effect of the Extraction Solvent
3.1.2. Effect of the Extraction Solvent Volume
3.1.3. Effect of Extraction Time
3.2. Optimization of MAE
Effect of the Extraction Solvent on Recoveries
3.3. Method Validation
3.4. PAHs Concentration Detected in uMsunduzi River Sediment Samples
3.5. PAH Concentration Detected in Darvill Sludge Landfill
3.6. PAH Origin Identification
Diagnostic Isomer Ratio
3.7. Toxicity Studies
3.7.1. Risk Assessment
3.7.2. Increment Life Cancer Risk
Variables | Child | Adult | Reference |
---|---|---|---|
Concentration, Ci (µg/kg) | - | - | |
Skin area exposed, SA (cm2) | 2800 | 5700 | [38,47] |
Exposure duration, ED (years) | 6 | 30 | [38] |
Body weight, BW (kg) | 15 | 71.9 | [52] |
Permeability coefficient, Kp (cm/h) (DahA) | 2.3 | [38] | |
Exposure time, ET (h/day) | 8 | [47] | |
Exposure frequency, EF (days/year) | 313 | [47] | |
Averaging time, AT (day) | 64.63 × 365 days = 23,590 | [53] | |
Conversion factor, CF | 1 × 10−6 | [47] | |
ILCRderm (µg/kg/day)-sediments | 1.92 × 10−1 | 4.98 × 10−1 | This study |
ILCRderm (µg/kg/day)-sludge | 1.01 × 10−1 | 2.62 × 10−1 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Knuckles, M.E.; Inyang, F.; Ramesh, A. Acute and subchronic oral toxicities of benzo[a]pyrene in F-344 rats. Toxicol. Sci. 2001, 61, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Edokpayi, J.N.; Odiyo, J.O.; Durowoju, O.S. Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa. In Water Quality; IntechOpen: London, UK, 2017; pp. 401–416. [Google Scholar]
- Gama, S.; Arnot, J.A.; Mackay, D. Toxic Organic Chemicals toxic(s) organic chemicals. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2013; pp. 10657–10671. [Google Scholar] [CrossRef]
- Cano-Lerida, L.; Rose, M.; Walton, P. Polycyclic Aromatic Hydrocarbons. In Bioactive Compounds in Foods; Elsevier: Amsterdam, The Netherlands, 2008; pp. 378–399. [Google Scholar] [CrossRef]
- Masood, F.; Singh, H.P.; Batish, D.R. Polycyclic Aromatic Hydrocarbons as Environmental Pollutants: A review. Int. J. Adv. Res. Sci. Eng. Technol. 2017, 6, 1361–1369. [Google Scholar] [CrossRef]
- Ngubo, A.; Mahlambi, P.N.; Ojwach, S.O. Occurrence of polycyclic aromatic hydrocarbons in water and sediment samples from KwaZulu Natal Province, South Africa. Water Environ. J. 2020, 35, 84–96. [Google Scholar] [CrossRef]
- Naudé, Y.; de Beer, W.H.J.; Jooste, S.; van der Merwe, L.; van Rensburg, S.J. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of DDT, DDD and DDE in sediment. Water SA 1998, 3, 205–213. [Google Scholar]
- Silalahi, E.T.M.E.; Anita, S.; Teruna, H.Y. Comparison of Extraction Techniques for the Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil. J. Phys. Conf. Ser. 2021, 1819, 012061. [Google Scholar] [CrossRef]
- Oduntan, A.O.; Tavengwa, N.T.; Mhlanga, S.; Chimuka, L.; Cukrowska, E. QuEChERS method development for bio-monitoring of low molecular weight polycyclic aromatic hydrocarbons in South African carp fish using hplc-fluorescence: An initial assessment. S. Afr. J. Chem. 2016, 69, 98–104. [Google Scholar] [CrossRef]
- Sadowska-Rociek, A.; Surma, M.; Cieślik, E. Comparison of different modifications on QuEChERS sample preparation method for PAHs determination in black, green, red and white tea. Environ. Sci. Pollut. Res. 2013, 21, 1326–1338. [Google Scholar] [CrossRef]
- Onopiuk, A.; Kołodziejczak, K.; Marcinkowska-Lesiak, M.; Poltorak, A. Determination of polycyclic aromatic hydrocarbons using different extraction methods and HPLC-FLD detection in smoked and grilled meat products. Food Chem. 2021, 373, 131506. [Google Scholar] [CrossRef]
- Khan, A.I. Analysis of 18 Polycyclic Aromatic Hydrocarbons in Soil Using the QuEChERS Method; Thermo Scientific: Waltham, MA, USA, 2014. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Harwach Scientific. Characteristics of the QuEChERS Method. 2019. Available online: https://www.hawachquechers.com/news/characteristics-of-the-quechers-method/ (accessed on 7 April 2023).
- Llompart, M.; Garcia-Jares, C.; Celeiro, M.; Dagnac, T. Extraction|Microwave-Assisted Extraction. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 67–77. [Google Scholar] [CrossRef]
- de Castro, M.L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Analytical Methods for Polycyclic Aromatic Hydrocarbons and their Global Trend of Distribution in Water and Sediment: A Review. In Recent Insights in Petroleum Science and Engineering; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Oluseyi, T.; Olayinka, K.; Alo, B.; Smith, R. Improved Analytical Extraction and Clean-up Techniques for the Determination of PAHs in Contaminated Soil Samples. Int. J. Environ. Res. 2011, 5, 681–690. [Google Scholar] [CrossRef]
- Coker, A.K. Method 3546: Microwave Extraction, part of Test Methods for Evaluation; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–13.
- SANAS. SANAS TR 26-3, Criteria for Validation of Methods Used by Chemical Laboratories; SANAS: Palo Alto, CA, USA, 2017; pp. 1–25. [Google Scholar]
- Hinshaw, J.V. Upgrading gas chromatography: This month in “GC Connections”, John Hinshaw discusses issues that can arise when deciding to upgrade or replace gas chromatography technologies. LC-GC N. Am. 2010, 28, 34–39. Available online: https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=15275949&v=2.1&it=r&id=GALE%7CA219898024&sid=googleScholar&linkaccess=fulltext (accessed on 7 September 2022).
- Ncube, S.; Madikizela, L.; Cukrowska, E.; Chimuka, L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. TrAC Trends Anal. Chem. 2018, 99, 101–116. [Google Scholar] [CrossRef]
- Scaramboni, C.; Neris, J.B.; Nascimento, R.d.K.S.D.; da Rosa, N.L.C.; Carvalho, J.S.; Grosseli, G.M.; Campos, M.L.A.M.; Fadini, P.S.; Urban, R.C. Optimization of a Low Volume Extraction Method to Determine Polycyclic Aromatic Hydrocarbons in Aerosol Samples. Front. Environ. Sci. 2021, 9, 742251. [Google Scholar] [CrossRef]
- Banjoo, D.R.; Nelson, P.K. Improved ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons in sediments. J. Chromatogr. A 2005, 1066, 9–18. [Google Scholar] [CrossRef]
- Aydin, M.E.; Ozcan, S.; Tor, A. Ultrasonic Solvent Extraction of Persistent Organic Pollutants from Airborne Particles. CLEAN-Soil Air Water 2007, 35, 660–668. [Google Scholar] [CrossRef]
- Fecher, P.A.; Schlemmer, G.C.; Schoeberl, K.S. Safety Aspects, Quality Control, and Quality Assurance using Microwave-Assisted Sample Preparation Systems. In Microwave-Assisted Sample Preparation for Trace Element Determination; Elsevier: Amsterdam, The Netherlands, 2014; pp. 345–384. [Google Scholar] [CrossRef]
- Sánchez-Uría, J.E.; Del Castillo-Busto, E. Analytical performance of microwave-assisted solvent extraction (MASE) for the routine determination of pahs in polluted soils by gas chromatographic-mass spectrometry (GC-MS). Rev. Int. Contam Ambient. 2018, 34, 355–366. [Google Scholar] [CrossRef]
- Steiner, D.; Krska, R.; Malachová, A.; Taschl, I.; Sulyok, M. Evaluation of Matrix Effects and Extraction Efficiencies of LC–MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J. Agric. Food Chem. 2020, 68, 3868–3880. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Du, W.; Tao, S. Water-induced release of recalcitrant polycyclic aromatic hydrocarbons from soil organic matter during microwave-assisted solvent extraction. Environ. Pollut. 2021, 284, 117493. [Google Scholar] [CrossRef]
- Ozcan, S.; Tor, A.; Aydin, M.E. Determination of Polycyclic Aromatic Hydrocarbons in Soil by Miniaturized Ultrasonic Extraction and Gas Chromatography-Mass Selective Detection. CLEAN-Soil Air Water 2009, 37, 811–817. [Google Scholar] [CrossRef]
- Lucas, J.; Percelay, I.; Larcher, T.; Lefrançois, C. Effects of pyrolytic and petrogenic polycyclic aromatic hydrocarbons on swimming and metabolic performance of zebrafish contaminated by ingestion. Ecotoxicol. Environ. Saf. 2016, 132, 145–152. [Google Scholar] [CrossRef]
- Jorfi, S.; Rezaee, A.; Moheb-Ali, G.-A.; Jaafarzadeh, N.A. Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J. Environ. Health Sci. Eng. 2013, 11, 17. [Google Scholar] [CrossRef]
- Dąbrowska, H.; Dąbrowski, Ł.; Biziuk, M.; Gaca, J.; Namieśnik, J. Solid-phase extraction clean-up of soil and sediment extracts for the determination of various types of pollutants in a single run. J. Chromatogr. A 2003, 1003, 29–42. [Google Scholar] [CrossRef]
- DWWW. Darvill Wastewater Works; Darvill Waste Water Treatment Site: Pietermaritzburg, South Africa, 2013; pp. 345–353. [Google Scholar]
- Munyengabe, A.; Mambanda, A.; Moodley, B. Polycyclic Aromatic Hydrocarbons in Water, Soils and Surface Sediments of the Msunduzi River. J. Environ. Anal. Chem. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 387. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Levels of Polycyclic Aromatic Hydrocarbons in the Water and Sediment of Buffalo River Estuary, South Africa and Their Health Risk Assessment. Arch. Environ. Contam. Toxicol. 2019, 76, 657–669. [Google Scholar] [CrossRef]
- Asagbra, M.; Adebayo, A.; Anumudu, C.; Ugwumba, O.; Ugwumba, A. Polycyclic aromatic hydrocarbons in water, sediment and fish from the Warri River at Ubeji, Niger Delta, Nigeria. Afr. J. Aquat. Sci. 2015, 40, 193–199. [Google Scholar] [CrossRef]
- Jaward, F.M.; Alegria, H.A.; Reyes, J.G.G.; Hoare, A. Levels of PAHs in the Waters, Sediments, and Shrimps of Estero de Urias, an Estuary in Mexico, and Their Toxicological Effects. Sci. World J. 2012, 2012, 687034. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Guo, Z.; Xiao, X.; Xiao, R. Polycyclic aromatic hydrocarbons in urban soils of China: Distribution, influencing factors, health risk and regression prediction. Environ. Pollut. 2019, 254, 112930. [Google Scholar] [CrossRef]
- Hua, L.; Wu, W.-X.; Liu, Y.-X.; Tientchen, C.; Chen, Y.-X. Heavy Metals and PAHs in Sewage Sludge from Twelve Wastewater Treatment Plants in Zhejiang Province. Biomed. Environ. Sci. 2008, 21, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, Z.; Liang, J.; Kuo, D.T.F.; Chen, S.; Hu, X.; Deng, M.; Zhang, H.; Lu, Y. Assessing pollution and risk of polycyclic aromatic hydrocarbons in sewage sludge from wastewater treatment plants in China’s top coal-producing region. Environ. Monit. Assess. 2019, 191, 102. [Google Scholar] [CrossRef]
- Torretta, V.; Katsoyiannis, A. Occurrence of polycyclic aromatic hydrocarbons in sludges from different stages of a wastewater treatment plant in Italy. Environ. Technol. 2013, 34, 937–943. [Google Scholar] [CrossRef]
- Montuori, P.; De Rosa, E.; Di Duca, F.; Provvisiero, D.P.; Sarnacchiaro, P.; Nardone, A.; Triassi, M. Estimation of Polycyclic Aromatic Hydrocarbons Pollution in Mediterranean Sea from Volturno River, Southern Italy: Distribution, Risk Assessment and Loads. Int. J. Environ. Res. Public Health 2021, 18, 1383. [Google Scholar] [CrossRef] [PubMed]
- Mohseni-Bandpei, A.; Majlesi, M.; Rafiee, M.; Nojavan, S.; Nowrouz, P.; Zolfagharpour, H. Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste. Chemosphere 2019, 227, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Howard, I.C.; Okpara, K.E.; Techato, K. Toxicity and Risks Assessment of Polycyclic Aromatic Hydrocarbons in River Bed Sediments of an Artisanal Crude Oil Refining Area in the Niger Delta, Nigeria. Water 2021, 13, 3295. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Shukurov, N.; Leimer, S.; Kersten, M.; Steinberger, Y.; Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: Spatial distribution, relationship with trace metals and risk assessment. Environ. Geochem. Health 2021, 43, 4847–4861. [Google Scholar] [CrossRef] [PubMed]
- CCME. Carcinogenic and Other Polycyclic Aromatic Hydrocarbons; CCME: Winnipeg, MB, Canada, 2010.
- IARC. List of Classifications by Cancer Sites with Sufficient or Limited Evidence in Humans, Volumes 1 to 113 * Cancer Site Carcinogenic Agents with Sufficient Evidence in Humans Agents with Limited Evidence in Humans Lip, Oral Cavity, and Pharynx List of Cl. 2020:1-12. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 15 November 2022).
- NYSDOH. Public Health Assessment Hopewell Precision Area Contamination; New York State Department of Health: New York, NY, USA, 2007.
- World Data Info. Average Height of Men and Women Worldwide. World Data Info. 2019. Available online: https://www.worlddata.info/average-bodyheight.php (accessed on 18 August 2022).
- Macrotrends. South Africa Life Expectancy, 1950–2020. 2020. Available online: https://www.macrotrends.net/countries/ZAF/south-africa/life-expectancy (accessed on 18 August 2022).
- Magubane, T. Msunduzi River Being Flushed ahead of Dusi Marathon. Mercury News. 2022. Available online: https://www.iol.co.za/mercury/news/msunduzi-river-being-flushed-ahead-of-dusi-marathon-8d1fb7ef-782b-4064-9b1b-0b925c0e9bba (accessed on 18 August 2022).
PAH Compound (n = 5) | LOD (µg/kg) | LOQ (µg/kg) | %Recovery ± %RSD | R2 Values | |||
---|---|---|---|---|---|---|---|
MAE | UE | MAE | UE | MAE | UE | ||
Naphthalene | 0.162 | 0.095 | 0.434 | 0.245 | 92.3 ± 0.04 | 121 ± 0.02 | 0.9992 |
Acenaphthylene | 0.113 | 0.051 | 0.323 | 0.136 | 98.1 ± 0.03 | 97.2 ± 0.01 | 0.9970 |
Acenaphthene | 0.034 | 0.145 | 0.080 | 0.394 | 98.1 ± 0.01 | 107 ± 0.04 | 0.9969 |
Fluorene | 0.762 | 0.084 | 1.238 | 0.234 | 88.4 ± 0.21 | 96.7 ± 0.02 | 0.9969 |
Phenanthrene | 1.211 | 0.960 | 3.536 | 1.259 | 101 ± 0.33 | 94.9 ± 0.02 | 0.9988 |
Anthracene | 0.138 | 0.019 | 0.310 | 0.049 | 113 ± 0.21 | 96.1 ± 0.004 | 0.9970 |
Fluoranthene | 0.964 | 0.093 | 2.795 | 0.266 | 79.1 ± 0.26 | 93.7 ± 0.02 | 0.9991 |
Pyrene | 0.968 | 0.091 | 2.814 | 0.259 | 81.9 ± 0.26 | 93.9 ± 0.02 | 0.9993 |
Benzo(k)fluoranthene | 0.058 | 0.183 | 0.118 | 0.546 | 81.3 ± 0.29 | 96.0 ± 0.05 | 0.9982 |
Benzo(ghi)perylene | 0.025 | 0.215 | 0.445 | 0.642 | 87.9 ± 0.26 | 96.6 ± 0.06 | 0.9989 |
Dibenz(a,h)anthracene | 0.062 | 0.127 | 0.245 | 0.382 | 122 ± 0.13 | 118 ± 0.04 | 0.9977 |
Sampling Point | CD | CR | WH | BS | 14A | 7A |
---|---|---|---|---|---|---|
Fl/(Fl + Py) | 0.45 | 0.47 | 0.45 | 0.45 | 0.46 | 0.45 |
LMW/HMW | 0.29 | 0.29 | 0.43 | 0.37 | 0.30 | 0.21 |
PAHs | Min Concentration | Max Concentration | Mean | ERL | ERM | TEF | MEF | ∑TEQ | ∑MEQ | Total %PAHs |
---|---|---|---|---|---|---|---|---|---|---|
Naphthalene | 96.0 | 138 | 109 | 97.0 | 101 | 0.001 | - | 0.49 | - | 3.52 |
Acenaphthylene | 112 | 213 | 140 | 113 | 117 | 0.001 | - | 0.64 | - | 4.60 |
Acenaphthelene | 172 | 413 | 248 | 176 | 203 | 0.001 | - | 1.01 | - | 7.22 |
Anthracene | nd | nd | nd | nd | nd | 0.01 | - | 16.0 | - | 11.4 |
Fluoranthene | nd | nd | nd | nd | nd | 0.001 | - | 2.99 | - | 21.4 |
Pyrene | 241 | 446 | 358 | 277 | 372 | 0.001 | - | 3.59 | - | 25.7 |
Benzo(k)fluoranthene | nd | 787 | 738 | 679 | 761 | 0.1 | 0.11 | 66.0 | 72.6 | 4.72 |
Benzo(ghi)perylene | 781 | 926 | 880 | 815 | 907 | 0.01 | 0.19 | 11.5 | 180 | 8.20 |
Dibenz(ah)antharacene | 186 | 229 | 212 | 193 | 222 | 1 | 0.29 | 1850 | 434 | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndwabu, S.; Malungana, M.; Mahlambi, P. Comparison of Ultra-Sonication and Microwave Extraction Followed by Filtration or Filtration and Solid-Phase Extraction Clean-Up for PAH Determination from Sediment and Sludge: Human Health and Ecological Risk Assessment. Appl. Sci. 2023, 13, 5619. https://doi.org/10.3390/app13095619
Ndwabu S, Malungana M, Mahlambi P. Comparison of Ultra-Sonication and Microwave Extraction Followed by Filtration or Filtration and Solid-Phase Extraction Clean-Up for PAH Determination from Sediment and Sludge: Human Health and Ecological Risk Assessment. Applied Sciences. 2023; 13(9):5619. https://doi.org/10.3390/app13095619
Chicago/Turabian StyleNdwabu, Sinayo, Mncedisi Malungana, and Precious Mahlambi. 2023. "Comparison of Ultra-Sonication and Microwave Extraction Followed by Filtration or Filtration and Solid-Phase Extraction Clean-Up for PAH Determination from Sediment and Sludge: Human Health and Ecological Risk Assessment" Applied Sciences 13, no. 9: 5619. https://doi.org/10.3390/app13095619
APA StyleNdwabu, S., Malungana, M., & Mahlambi, P. (2023). Comparison of Ultra-Sonication and Microwave Extraction Followed by Filtration or Filtration and Solid-Phase Extraction Clean-Up for PAH Determination from Sediment and Sludge: Human Health and Ecological Risk Assessment. Applied Sciences, 13(9), 5619. https://doi.org/10.3390/app13095619