Applying the DEMATEL−ANP Fuzzy Comprehensive Model to Evaluate Public Opinion Events
Abstract
:1. Introduction
2. Construction of a Network Public Opinion Evaluation Index System
3. Research Method
3.1. Calculate Indicator Weights Using the DEMATEL−ANP Model
- (1)
- Generate the direct relation matrix.
- (i)
- = impacting factor, in which stands for the degree of the impacting criteria.
- (ii)
- Impact range = (0: none; 1: very weak; 2: normal; 3: strong; 4: very strong).
- (iii)
- , where denotes the average value.
- (iv)
- As there are n number of criteria, the direct relation matrix is marked as
- (2)
- Calculate the normalized matrix.
- (3)
- Calculate the total relation matrix.
- (4)
- ANP network relationship diagram.
- (5)
- Generate the weighted matrix.
- (i)
- Let Tm = Um, where Um represents the unweighted matrix and Tm denotes the total relation matrix.
- (ii)
- Wm = NTm, passing Tm as the argument, NTm represents the normalized total relation matrix.
- (6)
- Generate the limit hyper matrix.
3.2. Fuzzy Comprehensive Evaluation of Public Opinion Events
4. Empirical Analysis
4.1. Case Data Collection and Communication Power Evaluation
4.2. Fuzzy Comprehensive Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhuang, M.; Li, Y.; Tan, X.; Xing, L.; Lu, X. Analysis of public opinion evolution of COVID-19 based on LDA-ARMA hybrid model. Complex Intell. Syst. 2021, 7, 3165–3178. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.J.; Shao, X.G.; Huang, W.M. Research on the Early-Warning Model of Network Public Opinion of Major Emergencies. IEEE Access 2021, 9, 44162–44172. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Shi, J.; Wang, J.; Liu, W. Modelling network public opinion polarization based on SIR model considering dynamic network structure. Alex. Eng. J. 2022, 61, 4557–4571. [Google Scholar] [CrossRef]
- Zhu, R.; Ding, Q.; Yu, M.; Wang, J.; Ma, M. Early Warning Scheme of COVID-19 related Internet Public Opinion based on RVM-L Model. Sustain. Cities Soc. 2021, 74, 103141. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zeng, X.; Xiong, P.; Zhang, N. G-GERT network model of online public opinion reversal based on kernel and grey degree. Grey Syst. Theory Appl. 2022, 12, 142–155. [Google Scholar] [CrossRef]
- Carpita, M.; Ciavolino, E.; Nitti, M. The MIMIC–CUB Model for the Prediction of the Economic Public Opinions in Europe. Soc. Indic. Res. 2019, 146, 287–305. [Google Scholar] [CrossRef]
- Song, J.; Zhu, X. Research on public opinion guidance of converging media based on AHP and transmission dynamics. Math. Biosci. Eng. MBE 2021, 18, 6857–6886. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X. Risk assessment for public–private partnership projects: Using a fuzzy analytic hierarchical process method and expert opinion in China. J. Risk Res. 2018, 21, 952–973. [Google Scholar] [CrossRef]
- Zhang, Q.F. Systematic Response to Campus Network Public Opinion in the Era of We-media. In Proceedings of the 2021 International Conference on Education, Information Management and Service Science (EIMSS), Xi’an, China, 16–18 July 2021; pp. 587–590. [Google Scholar]
- Zhang, Y.; Qi, J.; Fang, B.; Li, Y. The indicator system based on BP neural network model for net-mediated public opinion on unexpected emergency. China Commun. 2011, 8, 42–51. [Google Scholar]
- Fu, P.; Jing, B.; Chen, T.; Yang, J.; Cong, G. Modeling Network Public Opinion Propagation with the Consideration of Individual Emotions. Int. J. Environ. Res. Public Health 2020, 17, 6681. [Google Scholar] [CrossRef] [PubMed]
- Liyong, Z.; Xu, Z.; Min, H.; Dan, Z.; Wei, L.; Chunyang, L. Research on public opinion index system of Chinese microblog. In Proceedings of the 2014 IEEE 5th International Conference on Software Engineering and Service Science, Beijing, China, 27–29 June 2014; pp. 385–388. [Google Scholar]
- Li, Y.; Zhou, H.; Lin, Z.; Wang, Y.; Chen, S.; Liu, C.; Wang, Z.; Gifu, D.; Xia, J. Investigation in the influences of public opinion indicators on vegetable prices by corpora construction and WeChat article analysis. Future Gener. Comput. Syst. 2020, 102, 876–888. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.; Qiu, T.; Zhou, P. Food safety warning research based on internet public opinion monitoring and tracing. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 481–484. [Google Scholar]
- Jakobsen, T.G. Welfare Attitudes and Social Expenditure: Do Regimes Shape Public Opinion? Soc. Indic. Res. 2011, 101, 323–340. [Google Scholar] [CrossRef]
- Han, W.; Xiao, L.; Wu, X.; He, D.; Wang, Z.; Li, S. Construction of the Social Network Information Dissemination Index System Based on CNNs. Front. Phys. 2022, 10, 807099. [Google Scholar] [CrossRef]
- Ge, H. Research on the Construction of Early Warning Index System of Network Public Opinion Emergency Based on Computer Simulation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 592, 012101. [Google Scholar] [CrossRef]
- Dong, X.; Lian, Y.; Li, D.; Liu, Y. The Application of Cobb-Douglas Function in Forecasting the Duration of Internet Public Opinions Caused by the Failure of Public Policies. J. Syst. Sci. Syst. Eng. 2018, 27, 632–655. [Google Scholar] [CrossRef]
- Sun, L.; Cui, S.; An, Y.; Wang, C.; Tang, Z.; Song, C.; Zhao, W.; Zhang, H. Fine-grained Emotional Analysis and Intelligent Identification of Electric Power Public Opinion Based on Attention Mechanism. In Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27 February 2022; pp. 390–395. [Google Scholar]
- Cheng, H.; Huang, Y.-T.; Huang, J. The Application of DEMATEL-ANP in Livestream E-Commerce Based on the Research of Consumers’ Shopping Motivation. Sci. Program. 2022, 2022, 4487621. [Google Scholar] [CrossRef]
Principles | Description |
---|---|
Principle of profession | The screening and selection should be consistent with the research topic and should conform to the workflow of public opinion. |
Principle of practicality | Instead of being limited to a theoretical scope, the indicators should be able to be quantified and easy to obtain. |
Principle of quantification | Conceptualized indicators are difficult to quantify when converted into data. Thus, the indicators screened should be quantified or able to be converted to quantified data. |
Principle of correlation | The indicators should have internal connections to a certain extent to make sure the built index system is systematical. |
Principle of importance | According to the existing research, scholars have constructed their public opinion index systems with different goals, resulting in a huge number of influencing factors and causing the problem of redundancy and overlapping, based on which, selected indicators should be precise and important. |
The First Level | The Second Level |
---|---|
Degree of heat U1 | Number of issuances U11 |
Duration of concern U12 | |
Degree of quantity U2 | Number of clicks U21 |
Number of shares U22 | |
Number of comments U23 | |
Degree of strength U3 | Number of opinion leaders U31 |
Network area distribution U32 | |
Degree of focus U4 | Negative opinion holding rate U41 |
Neutral opinion holding rate U42 | |
Positive opinion holding rate U43 | |
Degree of variation U5 | Click growth rate U51 |
Share growth rate U52 | |
Comment growth rate U53 |
A/T | U11 | U12 | U21 | U22 | U23 | U31 | U32 | U41 | U42 | U43 | U51 | U52 | U53 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U11 | 0/0.17 | 4/0.24 | 4/0.24 | 3/0.23 | 4/0.28 | 3/0.21 | 3/0.17 | 3/0.26 | 3/0.24 | 3/0.24 | 4/0.27 | 3/0.23 | 3/0.22 |
U12 | 4/0.22 | 0/0.11 | 3/0.18 | 3/0.19 | 2/0.19 | 1/0.13 | 1/0.10 | 2/0.19 | 2/0.17 | 2/0.17 | 3/0.20 | 2/0.17 | 2/0.16 |
U21 | 4/0.27 | 3/0.22 | 0/0.15 | 4/0.26 | 4/0.28 | 3/0.21 | 2/0.15 | 2/0.24 | 2/0.21 | 2/0.21 | 4/0.28 | 4/0.26 | 4/0.24 |
U22 | 4/0.25 | 3/0.20 | 3/0.2 | 0/0.15 | 4/0.26 | 3/0.20 | 1/0.12 | 3/0.24 | 1/0.17 | 1/0.17 | 3/0.24 | 4/0.24 | 2/0.19 |
U23 | 2/0.18 | 1/0.13 | 0/0.11 | 3/0.19 | 0/0.14 | 4/0.20 | 3/0.14 | 4/0.24 | 3/0.20 | 3/0.20 | 3/0.20 | 2/0.17 | 4/0.2 |
U31 | 2/0.16 | 0/0.10 | 1/0.12 | 3/0.17 | 4/0.22 | 0/0.09 | 1/0.09 | 4/0.22 | 2/0.16 | 2/0.16 | 3/0.19 | 2/0.15 | 1/0.12 |
U32 | 1/0.07 | 1/0.06 | 2/0.08 | 1/0.07 | 1/0.07 | 2/0.08 | 0/0.03 | 0/0.05 | 0/0.04 | 0/0.04 | 0/0.05 | 0/0.04 | 0/0.04 |
U41 | 3/0.21 | 3/0.19 | 3/0.18 | 2/0.18 | 4/0.24 | 2/0.16 | 0/0.08 | 0/0.16 | 4/0.23 | 4/0.23 | 3/0.22 | 3/0.20 | 2/0.17 |
U42 | 0/0.02 | 0/0.02 | 0/0.02 | 0/0.02 | 0/0.03 | 0/0.02 | 0/0.01 | 4/0.13 | 0/0.04 | 4/0.13 | 0/0.02 | 0/0.02 | 0/0.02 |
U43 | 0/0.02 | 0/0.02 | 0/0.02 | 0/0.02 | 0/0.03 | 0/0.02 | 0/0.01 | 4/0.13 | 4/0.13 | 0/0.04 | 0/0.02 | 0/0.02 | 0/0.02 |
U51 | 4/0.23 | 3/0.19 | 4/0.21 | 2/0.18 | 2/0.20 | 1/0.14 | 2/0.13 | 2/0.20 | 2/0.18 | 2/0.18 | 0/0.15 | 3/0.20 | 3/0.19 |
U52 | 3/0.20 | 3/0.19 | 2/0.16 | 4/0.22 | 3/0.22 | 1/0.13 | 2/0.13 | 2/0.20 | 2/0.18 | 2/0.18 | 3/0.21 | 0/0.13 | 3/0.19 |
U53 | 2/0.19 | 3/0.19 | 2/0.16 | 2/0.18 | 4/0.25 | 3/0.18 | 1/0.11 | 2/0.20 | 2/0.18 | 2/0.18 | 4/0.24 | 4/0.22 | 0/0.12 |
Weighted Hyper Matrix | U11 | U12 | U21 | U22 | U23 | U31 | U32 | U41 | U42 | U43 | U51 | U52 | U53 | Limit Sorting Vectors |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U11 | 0.08 | 0.13 | 0.13 | 0.11 | 0.12 | 0.12 | 0.14 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.12 | 0.11 |
U12 | 0.10 | 0.06 | 0.10 | 0.09 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | 0.08 | 0.09 | 0.08 |
U21 | 0.12 | 0.12 | 0.08 | 0.13 | 0.12 | 0.12 | 0.12 | 0.10 | 0.10 | 0.10 | 0.12 | 0.13 | 0.13 | 0.11 |
U22 | 0.11 | 0.11 | 0.11 | 0.07 | 0.11 | 0.11 | 0.09 | 0.10 | 0.08 | 0.08 | 0.10 | 0.12 | 0.10 | 0.10 |
U23 | 0.08 | 0.07 | 0.06 | 0.09 | 0.06 | 0.11 | 0.11 | 0.10 | 0.09 | 0.09 | 0.09 | 0.08 | 0.11 | 0.09 |
U31 | 0.07 | 0.05 | 0.06 | 0.09 | 0.09 | 0.05 | 0.07 | 0.10 | 0.08 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 |
U32 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.05 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |
U41 | 0.10 | 0.10 | 0.10 | 0.09 | 0.10 | 0.90 | 0.07 | 0.07 | 0.11 | 0.11 | 0.10 | 0.10 | 0.09 | 0.09 |
U42 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.02 | 0.06 | 0.01 | 0.01 | 0.01 | 0.02 |
U43 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.06 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 |
U51 | 0.11 | 0.10 | 0.12 | 0.09 | 0.08 | 0.08 | 0.10 | 0.08 | 0.08 | 0.08 | 0.06 | 0.10 | 0.10 | 0.09 |
U52 | 0.11 | 0.10 | 0.09 | 0.11 | 0.09 | 0.08 | 0.10 | 0.08 | 0.08 | 0.08 | 0.09 | 0.10 | 0.10 | 0.09 |
U53 | 0.09 | 0.10 | 0.09 | 0.09 | 0.10 | 0.10 | 0.09 | 0.08 | 0.09 | 0.09 | 0.11 | 0.11 | 0.07 | 0.09 |
Control Layer | Weight | Network Layer | Weight |
---|---|---|---|
U1 | 0.2 | U11 | 0.57 |
U12 | 0.43 | ||
U2 | 0.3 | U21 | 0.38 |
U22 | 0.33 | ||
U23 | 0.29 | ||
U3 | 0.1 | U31 | 0.73 |
U32 | 0.27 | ||
U4 | 0.12 | U41 | 0.76 |
U42 | 0.12 | ||
U43 | 0.12 | ||
U5 | 0.28 | U51 | 0.34 |
U52 | 0.32 | ||
U53 | 0.34 |
Control Layer | Network Layer | Netease | Tecent | Souhu | |
---|---|---|---|---|---|
Degree of heat | Number of issuances (piece) | 33,678 | 1456 | 2877 | 1782 |
Duration of concern (day) | 10 | 7 | 9 | 6 | |
Degree of quantity | Number of clicks (million) | 67.31 | 1.93 | 2.89 | 1.72 |
Number of shares (thousand) | 310.4 | 10.08 | 8.53 | 12.23 | |
Number of comments (thousand) | 16.06 | 2.7 | 1.83 | 6.87 | |
Degree of strength | Number of opinion leaders (person) | 23 | 13 | 9 | 11 |
Network area distribution (province) | 24 | 26 | 23 | 27 | |
Degree of focus | Negative opinion holding rate | 0.91 | 0.82 | 0.93 | 0.85 |
Neutral opinion holding rate | 0.07 | 0.09 | 0.07 | 0.08 | |
Positive opinion holding rate | 0.02 | 0.09 | 0 | 0.07 | |
Degree of variation | Click growth rate | 0.63 | 0.34 | 0.28 | 0.37 |
Share growth rate | 0.54 | 0.29 | 0.33 | 0.31 | |
Comment growth rate | 0.59 | 0.41 | 0.29 | 0.34 |
Control Layer | Network Layer | Extreme | Large | Medium | Small | Light |
---|---|---|---|---|---|---|
Degree of heat | Number of issuances | 0.93 | 0.06 | 0.03 | 0 | 0 |
Duration of concern | 0.85 | 0.1 | 0.03 | 0.01 | 0 | |
Degree of quantity | Number of clicks | 0.84 | 0.09 | 0.06 | 0.01 | 0 |
Number of shares | 0.86 | 0.06 | 0.04 | 0.03 | 0.01 | |
Number of comments | 0.74 | 0.21 | 0.02 | 0.03 | 0 | |
Degree of strength | Number of opinion leaders | 0.72 | 0.18 | 0.09 | 0.01 | 0 |
Network area distribution | 0.68 | 0.3 | 0.02 | 0 | 0 | |
Degree of focus | Negative opinion holding rate | 0.82 | 0.11 | 0.07 | 0 | 0 |
Neutral opinion holding rate | 0.44 | 0.17 | 0.23 | 0.04 | 0.12 | |
Positive opinion holding rate | 0.28 | 0.12 | 0.46 | 0.1 | 0.04 | |
Degree of variation | Click growth rate | 0.81 | 0.16 | 0 | 0.02 | 0 |
Share growth rate | 0.78 | 0.12 | 0.04 | 0.03 | 0.03 | |
Comment growth rate | 0.72 | 0.16 | 0.1 | 0.02 | 0 |
Events | Social Field | Evaluation Value | Level |
---|---|---|---|
Math textbook with inappropriate illustrations | Education | 0.80 | Extreme |
CNKI monopoly | Business | 0.52 | Medium |
Shifts in the COVID-19 policy | Public health | 0.87 | Extreme |
Flight MU5735 crash | Security | 0.81 | Extreme |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Luo, L.; Liu, T. Applying the DEMATEL−ANP Fuzzy Comprehensive Model to Evaluate Public Opinion Events. Appl. Sci. 2023, 13, 5737. https://doi.org/10.3390/app13095737
Wang H, Luo L, Liu T. Applying the DEMATEL−ANP Fuzzy Comprehensive Model to Evaluate Public Opinion Events. Applied Sciences. 2023; 13(9):5737. https://doi.org/10.3390/app13095737
Chicago/Turabian StyleWang, Hua, Ling Luo, and Tao Liu. 2023. "Applying the DEMATEL−ANP Fuzzy Comprehensive Model to Evaluate Public Opinion Events" Applied Sciences 13, no. 9: 5737. https://doi.org/10.3390/app13095737
APA StyleWang, H., Luo, L., & Liu, T. (2023). Applying the DEMATEL−ANP Fuzzy Comprehensive Model to Evaluate Public Opinion Events. Applied Sciences, 13(9), 5737. https://doi.org/10.3390/app13095737