A Three-Dimensional Elastoplastic Constitutive Model for Geomaterials
Abstract
:1. Introduction
2. Geometric Representation of Stress Space
3. Three-Dimensional Generalized Mohr-Coulomb Plastic Model
4. Convexity of GMC-L Failure Criterion
5. Strength Parameters Determined on Meridian Plane
5.1. Failure Function on Meridian Plane
5.2. Determination and Verification of Strength Parameters
6. Experimental Verification of GMC-L Criterion
7. Numerical Implementation
7.1. Elastoplastic Constitutive Relations’ General Manifestation
7.2. The Partial Derivative of Principal Stress to Stress Component
7.3. The Mixed Complementarity Problem and its GSPC Algorithm
8. Numerical Examples
8.1. Uniaxial Compression
8.2. Uniaxial Compression
8.3. Modeling of Tunnel Excavation
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gao, F.; Yang, Y.; Cheng, H.; Cai, C. Novel 3D failure criterion for rock materials. Int. J. Geomech. 2019, 19, 4019046. [Google Scholar] [CrossRef]
- Labuz, J.F.; Zang, A. Mohr–Coulomb failure criterion. Rock Mech. Rock Eng. 2012, 45, 975–979. [Google Scholar] [CrossRef]
- Du, X.; Lu, D.; Gong, Q.; Zhao, M. Nonlinear unified strength criterion for concrete under three-dimensional stress states. J. Eng. Mech. 2010, 136, 51–59. [Google Scholar] [CrossRef]
- Yu, M.H. Advances in strength theories for materials under complex stress state in the 20th Century. Adv. Mech. 2004, 34, 529–560. [Google Scholar] [CrossRef]
- Chen, W.; Saleeb, A.F. Constitutive Equations for Engineering Materials: Elasticity and Modeling; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Menetrey, P.; Willam, K.J. Triaxial failure criterion for concrete and its generalization. Struct. J. 1995, 92, 311–318. [Google Scholar] [CrossRef]
- Argyris, J.H.; Faust, G.; Szimmat, J.; Warnke, E.P.; Willam, K.J. Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl. Eng. Des. 1974, 28, 42–75. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, T.; Wang, Q. The mixed complementarity problem arising from non-associative plasticity with non-smooth yield surfaces. Comput. Method Appl. M 2020, 361, 112756. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, Q. Dimension extending technique for constitutive integration of plasticity with hardening–softening behaviors. Comput Method Appl M 2022, 394, 114833. [Google Scholar] [CrossRef]
- Matsuoka, H.; Nakai, T. Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. Jpn. Soc. Civ. Eng. 1974, 232, 59–70. [Google Scholar] [CrossRef]
- Yu, M.H. Unified strength theory for geomaterials and its applications. Chin. J. Geotech. Eng. 1994, 16, 1–10. [Google Scholar]
- Lade, P.V.; Duncan, J.M. Elastoplastic stress–strain theory for cohesionless soil. J. Geotech. Eng. Div. 1975, 101, 1037–1053. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Empirical strength criterion for rock masses. J. Geotech. Eng. Div. 1980, 106, 1013–1035. [Google Scholar] [CrossRef]
- Yoshida, N.; Morgenstern, N.R.; Chan, D.H. A failure criterion for stiff soils and rocks exhibiting softening. Can Geotech J. 1990, 27, 195–202. [Google Scholar] [CrossRef]
- Zhang, Q.; Shuilin, W.; Xiurun, G.E.; Hongying, W. Modified Mohr-Coulomb strength criterion considering rock mass intrinsic material strength factorization. Min. Sci. Technol. (China) 2010, 20, 701–706. [Google Scholar] [CrossRef]
- Jiang, H. Simple three-dimensional Mohr-Coulomb criteria for intact rocks. Int. J. Rock Mech. Min. 2018, 105, 145–159. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.; Quan, X.; Wang, Y.; Yu, L.; Jiang, B. New true-triaxial rock strength criteria considering intrinsic material characteristics. Acta Mech. Sin. -Prc. 2018, 34, 130–142. [Google Scholar] [CrossRef]
- Al-Ajmi, A.M.; Zimmerman, R.W. Relation between the Mogi and the Coulomb failure criteria. Int. J. Rock Mech. Min. 2005, 42, 431–439. [Google Scholar] [CrossRef]
- Singh, M.; Raj, A.; Singh, B. Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int. J. Rock Mech. Min. 2011, 48, 546–555. [Google Scholar] [CrossRef]
- Li, X.; Kim, E.; Walton, G. A study of rock pillar behaviors in laboratory and in situ scales using combined finite-discrete element method models. Int. J. Rock Mech. Min. 2019, 118, 21–32. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.B.; Xu, L.M. Formulation of the return mapping algorithm for elastoplastic soil models. Comput Geotech 2004, 31, 315–338. [Google Scholar] [CrossRef]
- Krieg, R.D.; Krieg, D.B. Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model. J. Press. Vessel Technol. 1977, 99, 510–515. [Google Scholar] [CrossRef]
- De Borst, R. Integration of plasticity equations for singular yield functions. Comput. Struct 1987, 26, 823–829. [Google Scholar] [CrossRef]
- Adhikary, D.P.; Jayasundara, C.T.; Podgorney, R.K.; Wilkins, A.H. A robust return-map algorithm for general multisurface plasticity. Int. J. Numer Meth. Eng. 2017, 109, 218–234. [Google Scholar] [CrossRef]
- Liu, K.; Chen, S.L.; Gu, X.Q. Analytical and Numerical Analyses of Tunnel Excavation Problem Using an Extended Drucker–Prager Model. Rock Mech. Rock Eng. 2020, 53, 1777–1790. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Q.; Zhou, W. Implementation of the Tresca yield criterion in finite element analysis of burst capacity of pipelines. Int. J. Pres Ves Pip 2019, 172, 180–187. [Google Scholar] [CrossRef]
- Kossa, A.; Szabó, L. Numerical implementation of a novel accurate stress integration scheme of the von Mises elastoplasticity model with combined linear hardening. Finite Elem. Anal. Des. 2010, 46, 391–400. [Google Scholar] [CrossRef]
- Liu, K.; Chen, S.L.; Voyiadjis, G.Z. Integration of anisotropic modified Cam Clay model in finite element analysis: Formulation, validation, and application. Comput. Geotech 2019, 116, 103198. [Google Scholar] [CrossRef]
- Chen, S.; Abousleiman, Y.; Muraleetharan, K.K. Computational implementation of bounding surface model and its verification through cavity benchmark problems. Int. J. Numer Anal Met. 2022, 46, 553–569. [Google Scholar] [CrossRef]
- Xiang, X.; Zi-Hang, D. Numerical implementation of a modified Mohr–Coulomb model and its application in slope stability analysis. J. Mod. Transp 2017, 25, 40–51. [Google Scholar] [CrossRef]
- Lu, D.; Du, X.; Wang, G.; Zhou, A.; Li, A. A three-dimensional elastoplastic constitutive model for concrete. Comput. Struct 2016, 163, 41–55. [Google Scholar] [CrossRef]
- Kong, X.; Cai, G.; Cheng, Y.; Zhao, C. Numerical implementation of three-dimensional nonlinear strength model of soil and its application in slope stability analysis. Sustain. -Basel 2022, 14, 5127. [Google Scholar] [CrossRef]
- Hill, R. The Mathematical Theory of Plasticity; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Craig, R.F. Craig’s Soil Mechanics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Mogi, K. Effect of the intermediate principal stress on rock failure. J. Geophys. Res. 1967, 72, 5117–5131. [Google Scholar] [CrossRef]
- Piccolroaz, A.; Bigoni, D. Yield criteria for quasibrittle and frictional materials: A generalization to surfaces with corners. Int. J. Solids Struct 2009, 46, 3587–3596. [Google Scholar] [CrossRef]
- Jiang, J.; Pietruszczak, S. Convexity of yield loci for pressure sensitive materials. Comput Geotech 1988, 5, 51–63. [Google Scholar] [CrossRef]
- Bigoni, D.; Piccolroaz, A. Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct 2004, 41, 2855–2878. [Google Scholar] [CrossRef]
- Lin, F.; Bažant, Z.P. Convexity of smooth yield surface of frictional material. J. Eng. Mech. 1986, 112, 1259–1262. [Google Scholar] [CrossRef]
- Reddy, K.R.; Saxena, S.K. Effects of cementation on stress–strain and strength characteristics of sands. Soils Found 1993, 33, 121–134. [Google Scholar] [CrossRef]
- Hu, P.; Huang, M.S.; Ma, S.K.; Lv, X.L. True triaxial tests and strength characteristics of silty sand. Rock Soil Mech. 2011, 32, 465–470. (In Chinese) [Google Scholar] [CrossRef]
- Nakai, T.; Matsuoka, H.; Okuno, N.; Tsuzuki, K. True triaxial tests on normally consolidated clay and analysis of the observed shear behavior using elastoplastic constitutive models. Soils Found 1986, 26, 67–78. [Google Scholar] [CrossRef]
- Lade, P.V.; Wang, Q. Analysis of shear banding in true triaxial tests on sand. J. Eng. Mech. 2001, 127, 762–768. [Google Scholar] [CrossRef]
- Wu, W.; Kolymbas, D. On some issues in triaxial extension tests. Geotech Test J. 1991, 14, 24. [Google Scholar] [CrossRef]
- Lam, W.; Tatsuoka, F. Effects of initial anisotropic fabric and σ2 on strength and deformation characteristics of sand. Soils Found 1988, 28, 89–106. [Google Scholar] [CrossRef]
- Murrell, S.A.F. The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures. Geophys J. Int. 1965, 10, 231–281. [Google Scholar] [CrossRef]
- Papamichos, E.; Tronvoll, J.; Vardoulakis, I.; Labuz, J.F.; Skjærstein, A.; Unander, T.E.; Sulem, J. Constitutive testing of Red Wildmoor sandstone. Mech. Cohesive–Frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 2000, 5, 1–40. [Google Scholar] [CrossRef]
- Bésuelle, P.; Desrues, J.; Raynaud, S. Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int. J. Rock Mech. Min. 2000, 37, 1223–1237. [Google Scholar] [CrossRef]
- Lade, P.V.; Duncan, J.M. Cubical triaxial tests on cohesionless soil. J. Soil Mech. Found. Div. 1973, 99, 793–812. [Google Scholar] [CrossRef]
- Qn, S.N. Drucker’s and Ilyushin’s postulate of plasticity. Acta Mech. Sin.-Prc. 1981, 5, 465–473. [Google Scholar]
- Chen, W.F.; Yamaguchi, E.; Zhang, H. On the loading criteria in the theory of plasticity. Comput Struct. 1991, 39, 679–683. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method-Solid Mechanics; Butterworth Heinemann: Barcelona, Spain, 2000. [Google Scholar]
- Murcia-Delso, J.; Benson Shing, P. Elastoplastic dilatant interface model for cyclic bond-slip behavior of reinforcing bars. J. Eng. Mech. 2016, 142, 4015082. [Google Scholar] [CrossRef]
- Sutharsan, T.; Muhunthan, B.; Liu, Y. Development and implementation of a constitutive model for unsaturated sands. Int. J. GeoMech. 2017, 17, 4017103. [Google Scholar] [CrossRef]
- Singh, V.; Stanier, S.; Bienen, B.; Randolph, M.F. Modelling the behaviour of sensitive clays experiencing large deformations using non-local regularisation techniques. Comput Geotech 2021, 133, 104025. [Google Scholar] [CrossRef]
- Cai, M.F. Rock Mechanics and Engineering; Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Zareifard, M.R. A new semi-numerical method for elastoplastic analysis of a circular tunnel excavated in a Hoek–Brown strain-softening rock mass considering the blast-induced damaged zone. Comput Geotech 2020, 122, 103476. [Google Scholar] [CrossRef]
- Gutiérrez-Ch, J.G.; Senent, S.; Zeng, P.; Jimenez, R. DEM simulation of rock creep in tunnels using Rate Process Theory. Comput. Geotech 2022, 142, 104559. [Google Scholar] [CrossRef]
- Chen, S.; Feng, F.; Wang, Y.; Li, D.; Huang, W.; Zhao, X.; Jiang, N. Tunnel failure in hard rock with multiple weak planes due to excavation unloading of in situ stress. J. Cent. South Univ. 2020, 27, 2864–2882. [Google Scholar] [CrossRef]
S.No | Soil Name | Source | ||
---|---|---|---|---|
1 | Monterey sand | 37 | 46 | Reddy and Saxena (1993) |
2 | Santa Monica sand | 40.92 | 46.96 | Lade and Wang (2001) |
3 | Shanghai fine sand | 45.26 | 52.25 | Hu et al. (2011) |
4 | Normally-consolidated Fujinomori clay | 35.19 | 37.31 | Nakai et al. (1986) |
S.No | Rock Name | c0 (MPa) | c1 (MPa) | Source | ||
---|---|---|---|---|---|---|
1 | Darley sandstone | 35.3 | 39.6 | 26.8 | 31.3 | Murrell (1965) |
2 | Westerly granite | 53.4 | 59.7 | 41.4 | 52.7 | Mogi (1967) |
3 | Dulham dolomite | 46.8 | 51.2 | 49.5 | 57.6 | Mogi (1967) |
4 | Red Wildmoor sandstone | 28.5 | 35.6 | 6.0 | 7.9 | Papamichos et al. (2000) |
Model | Elastic Modulus (Mpa) | Poisson’s Ratio | c0 (Mpa) | c1 (Mpa) | ||
---|---|---|---|---|---|---|
M-C | 1000 | 0.3 | 45 | - | 1.2 | - |
GMC | 1000 | 0.3 | 45 | 45 | 1.2 | 1.2 |
Model | Elastic Modulus (MPa) | Poisson’s Ratio | c0 (MPa) | c1 (MPa) | ||
---|---|---|---|---|---|---|
GMC | 2000 | 0.3 | 30 | 30 | 6.0 | 6.0 |
Model | Elastic Modulus (MPa) | Poisson’s Ratio | c0 (MPa) | c1 (MPa) | |||
---|---|---|---|---|---|---|---|
GMC | 30,000 | 0.25 | 28.5 | 35.6 | 6.0 | 6.3 | 0 |
M-C | 30,000 | 0.25 | 28.5 | - | 6.0 | - | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, D.; Zheng, H. A Three-Dimensional Elastoplastic Constitutive Model for Geomaterials. Appl. Sci. 2023, 13, 5746. https://doi.org/10.3390/app13095746
Tian D, Zheng H. A Three-Dimensional Elastoplastic Constitutive Model for Geomaterials. Applied Sciences. 2023; 13(9):5746. https://doi.org/10.3390/app13095746
Chicago/Turabian StyleTian, Dongshuai, and Hong Zheng. 2023. "A Three-Dimensional Elastoplastic Constitutive Model for Geomaterials" Applied Sciences 13, no. 9: 5746. https://doi.org/10.3390/app13095746
APA StyleTian, D., & Zheng, H. (2023). A Three-Dimensional Elastoplastic Constitutive Model for Geomaterials. Applied Sciences, 13(9), 5746. https://doi.org/10.3390/app13095746