Assessment and Spatial Distribution of Urban Ecosystem Functions Applied in Two Czech Cities
Abstract
:Highlights
- Surprisingly, ecosystem services can be provided at relatively high levels even in medium-sized cities of regional importance.
- Contrary to expectations, the level of ecosystem service provision is unevenly distributed and does not exactly follow the urban-rural gradient, with very good performance in peri-urban areas compared to rural areas.
- The uneven distribution of ecosystem service provision requires a more detailed analysis for urban planning and achieving the goals of adaptation strategies.
- Consequently, more focus on key areas is needed, rather than assuming provision of ecosystem services along an urban-rural gradient.
Featured Application
Abstract
1. Introduction
1.1. Functions and Services of Urban Ecosystem Climate Change Mitigation
1.2. Assessment of Urban Ecosystem Functions and Services
1.3. Assessment of Individual Ecosystem Functions
1.3.1. Biodiversity: Habitat Provision
1.3.2. Climate Regulation at the Local Level: Evapotranspiration
1.3.3. Climate Change Mitigation: Carbon Production, Storage, and Sequestration
1.4. Distribution of EFs in a City
1.5. Objectives
2. Materials and Methods
2.1. Location
Name of the Administrative Territory | Liberec | Děčín | |
---|---|---|---|
Area (km2) | 106.1 | 117.7 | |
Elevation min–max (m a.s.l.) | 296–1012 | 115–708 | |
Elevation mean (m a.s.l.) | 469 | 331 | |
Predominant geological subsoil | Granite, silt, marble | Sandstone, impure carbonate sedimentary rock, basanite | |
Predominant soil types | Cambisols, Leptosols, Podzols, Stagnosols, and Retisols | Podzols, Cambisols, Leptosols, Stagnosols, and Luvisols | |
Annual average daily temperature (°C) | 7.4 | 8.2 | |
Annual average total precipitation (mm·year−1) | 890 | 640 | |
CORINE LC (class level 1) 2018 (%) | Artificial surfaces | 31.5 | 12.5 |
Agricultural areas | 27.4 | 21.7 | |
Forest and seminatural areas | 41.2 | 64 | |
Water bodies | 0 | 1.8 | |
Number of citizens (1 January 2021) | 104,261 | 47,951 |
2.2. Map Data and Habitat Types
2.3. Assessment of EFs Performance Indicating Habitat Capacity to Provide ESs
2.3.1. Biodiversity Assessment at Habitat Level
2.3.2. Habitat Connectivity Assessment at the Landscape Level
2.3.3. Assessment of Evapotranspiration
2.3.4. Assessment of Carbon Production
2.4. Parametrization and Relative Comparison of Values
2.5. Assessment of Urban–Rural Gradient of EFs
3. Results and Discussion
3.1. Results and Discussion of Method Application
3.1.1. Values of EFs in Liberec and Děčín
3.1.2. Comparison of Liberec and Děčín
3.1.3. Relative Comparison of Values of Individual EFs
3.1.4. The Urban–Rural Gradient
3.2. Discussion of the Method Choice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CR | Czech Republic |
EFs | Ecosystem function |
ESs | Ecosystem services |
HVM | Habitat valuation method |
LAI | Leaf area index |
NCA CR | Nature Conservation Agency of the Czech Republic |
NDVI | Normalized difference vegetation index |
PLA | Protected landscape area |
TEEB | The Economics of Ecosystems and Biodiversity |
References
- Mexia, T.; Vieira, J.; Príncipe, A.; Anjos, A.; Silva, P.; Lopes, N.; Freitas, C.; Santos-Reis, M.; Correia, O.; Branquinho, C.; et al. Ecosystem Services: Urban Parks under a Magnifying Glass. Environ. Res. 2018, 160, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.R.; Belcher, R.N. Global Changes in Urban Vegetation Cover. Remote Sens. 2019, 12, 23. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.W.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W.L.; et al. Scenarios for Global Biodiversity in the 21st Century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Smart Conservation for the 21st Century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- TEEB The Economics of Ecosystems and Biodiversity: TEEB Manual for Cities—Ecosystem Services in Urban Management. 2011. Available online: www.teebweb.org (accessed on 3 December 2022).
- Villamagna, A.M.; Angermeier, P.L.; Bennett, E.M. Capacity, Pressure, Demand, and Flow: A Conceptual Framework for Analyzing Ecosystem Service Provision and Delivery. Ecol. Complex. 2013, 15, 114–121. [Google Scholar] [CrossRef]
- Potschin, M.B.; Haines-Young, R.H. Ecosystem Services: Exploring a Geographical Perspective. Prog. Phys. Geogr. Earth Environ. 2011, 35, 575–594. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.; Van Der Ploeg, S.; Aronson, J.; Blignaut, J.; Gómez-Baggethun, E.; Nowak, D.; Kronenberg, J.; De Groot, R. Benefits of Restoring Ecosystem Services in Urban Areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and Valuing Ecosystem Services for Urban Planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Li, S.; Liang, W.; Fu, B.; Lü, Y.; Fu, S.; Wang, S.; Su, H. Vegetation Changes in Recent Large-Scale Ecological Restoration Projects and Subsequent Impact on Water Resources in China’s Loess Plateau. Sci. Total Environ. 2016, 569–570, 1032–1039. [Google Scholar] [CrossRef]
- Rovai, M.; Zetti, I.; Lucchesi, F.; Rossi, M.; Andreoli, M. Peri-Urban Open Spaces and Sustainable Urban Development Between Value and Consumption. In Values and Functions for Future Cities; Mondini, G., Oppio, A., Stanghellini, S., Bottero, M., Abastante, F., Eds.; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2020; pp. 249–265. [Google Scholar]
- Salata, S.; Giaimo, C.; Alberto Barbieri, C.; Garnero, G. The Utilization of Ecosystem Services Mapping in Land Use Planning: The Experience of LIFE SAM4CP Project. J. Environ. Plan. Manage. 2020, 63, 523–545. [Google Scholar] [CrossRef]
- Salizzoni, E.; Allocco, M.; Murgese, D.; Quaglio, G. From Ecosystem Service Evaluation to Landscape Design: The Project of a Rural Peri-Urban Park in Chieri (Italy). In Values and Functions for Future Cities; Mondini, G., Oppio, A., Stanghellini, S., Bottero, M., Abastante, F., Eds.; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2020; pp. 267–283. [Google Scholar] [CrossRef]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island Effect Mitigation in the Municipality of Rome, Italy. Ecol. Modell. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an Urban Ecosystem Service: Quantifying above-Ground Carbon Storage at a City-Wide Scale: Urban above-Ground Carbon Storage. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem Service Bundles along the Urban-Rural Gradient: Insights for Landscape Planning and Management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef]
- Vihervaara, P.; Mononen, L.; Nedkov, S.; Viinikka, A. Biophysical Mapping and Assessment Methods for Ecosystem Services; Deliverable D3.3 EU Horizon 2020 ESMERALDA Project, Grant Agreement No. 642007; European Commission: Luxembourg, 2018. [Google Scholar]
- Chan, K.M.A.; Guerry, A.D.; Balvanera, P.; Klain, S.; Satterfield, T.; Basurto, X.; Bostrom, A.; Chuenpagdee, R.; Gould, R.; Halpern, B.S.; et al. Where Are Cultural and Social in Ecosystem Services? A Framework for Constructive Engagement. BioScience 2012, 62, 744–756. [Google Scholar] [CrossRef]
- European Commission. EU Guidance on Integrating Ecosystems and Their Services into Decision-Making; European Commission: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/environment/nature/ecosystems/pdf/SWD_2019_305_F1_STAFF_WORKING_PAPER_EN_V2_P1_1042629.PDF (accessed on 19 April 2023).
- Dobbs, C.; Escobedo, F.J.; Zipperer, W.C. A Framework for Developing Urban Forest Ecosystem Services and Goods Indicators. Landsc. Urban Plan. 2011, 99, 196–206. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban Ecosystem Services Assessment along a Rural–Urban Gradient: A Cross-Analysis of European Cities. Ecol. Indicat. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- OECD (Ed.) Environmental indicators: 2001 towards sustainable development. In Environment; OECD: Paris, France, 2001. [Google Scholar]
- Niemi, G.J.; McDonald, M.E. Application of Ecological Indicators. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 89–111. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of Climate Change on the Future of Biodiversity: Biodiversity and Climate Change. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Lavorel, S.; Colloff, M.J.; Mcintyre, S.; Doherty, M.D.; Murphy, H.T.; Metcalfe, D.J.; Dunlop, M.; Williams, R.J.; Wise, R.M.; Williams, K.J. Ecological Mechanisms Underpinning Climate Adaptation Services. Glob. Change Biol. 2015, 21, 12–31. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.A.T. Biodiversity Loss under Existing Land Use and Climate Change: An Illustration Using Northern South America. Glob. Ecol. Biogeogr. 2007, 16, 197–204. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.G.; Cilliers, S.; Clarkson, B.; et al. A Global Analysis of the Impacts of Urbanization on Bird and Plant Diversity Reveals Key Anthropogenic Drivers. Proc. R. Soc. B. 2014, 281, 20133330. [Google Scholar] [CrossRef] [PubMed]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef]
- Ives, C.D.; Lentini, P.E.; Threlfall, C.G.; Ikin, K.; Shanahan, D.F.; Garrard, G.E.; Bekessy, S.A.; Fuller, R.A.; Mumaw, L.; Rayner, L.; et al. Cities Are Hotspots for Threatened Species: The Importance of Cities for Threatened Species. Glob. Ecol. Biogeogr. 2016, 25, 117–126. [Google Scholar] [CrossRef]
- Kowarik, I. Novel Urban Ecosystems, Biodiversity, and Conservation. Environ. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef]
- Jarvis, P.J.; Young, C.H. The mapping of urban habitat and its evaluation. In Urban Forum of the United Kingdom Man and the Biosphere Programme; University of Wolverhampton: Wolverhampton, UK, 2005. [Google Scholar]
- Hong, S.-K.; Song, I.-J.; Byun, B.; Yoo, S.; Nakagoshi, N. Applications of Biotope Mapping for Spatial Environmental Planning and Policy: Case Studies in Urban Ecosystems in Korea. Landsc. Ecol. Eng. 2005, 1, 101–112. [Google Scholar] [CrossRef]
- Weiers, S.; Bock, M.; Wissen, M.; Rossner, G. Mapping and Indicator Approaches for the Assessment of Habitats at Different Scales Using Remote Sensing and GIS Methods. Landsc. Urban Plan. 2004, 67, 43–65. [Google Scholar] [CrossRef]
- Kowarik, I.; von der Lippe, M. Plant Population Success across Urban Ecosystems: A Framework to Inform Biodiversity Conservation in Cities. J. Appl. Ecol. 2018, 55, 2354–2361. [Google Scholar] [CrossRef]
- Seják, J.; Cudlín, P.; Petříček, V.; Prokopová, M.; Cudlín, O.; Holcová, D.; Kaprová, K.; Melichar, J.; Škarková, P.; Žákovská, K.; et al. Metodika hodnocení biotopů AOPK ČR (6. verze). In Habitat Assessment Methodology NCA CR, 6th ed.; AOPK: Prague, Czech Republic, 2018; Available online: http://www.imalbes.cz/file/metodika_BVM.pdf (accessed on 12 December 2022).
- Schittko, C.; Bernard-Verdier, M.; Heger, T.; Buchholz, S.; Kowarik, I.; Lippe, M.; Seitz, B.; Joshi, J.; Jeschke, J.M. A Multidimensional Framework for Measuring Biotic Novelty: How Novel Is a Community? Glob. Change Biol. 2020, 26, 4401–4417. [Google Scholar] [CrossRef] [PubMed]
- Rüdisser, J.; Tasser, E.; Tappeiner, U. Distance to Nature—A New Biodiversity Relevant Environmental Indicator Set at the Landscape Level. Ecol. Indicat. 2012, 15, 208–216. [Google Scholar] [CrossRef]
- Tischendorf, L.; Fahrig, L. On the Usage and Measurement of Landscape Connectivity. Oikos 2000, 90, 7–19. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Bullock, J.M.; Newton, A.C. Creating Woodland Islets to Reconcile Ecological Restoration, Conservation, and Agricultural Land Use. Front. Ecol. Environ. 2008, 6, 329–336. [Google Scholar] [CrossRef]
- Bergsten, A.; Galafassi, D.; Bodin, Ö. The Problem of Spatial Fit in Social-Ecological Systems: Detecting Mismatches between Ecological Connectivity and Land Management in an Urban Region. Ecol. Soc. 2014, 19, 22. [Google Scholar] [CrossRef]
- Hejkal, J.; Buttschardt, T.K.; Klaus, V.H. Connectivity of Public Urban Grasslands: Implications for Grassland Conservation and Restoration in Cities. Urban Ecosyst. 2017, 20, 511–519. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, L.; Zuo, S.; Luo, Y.; Shao, G.; Wei, X.; Hua, L.; Yang, Y. Geographical Modeling of Spatial Interaction between Human Activity and Forest Connectivity in an Urban Landscape of Southeast China. Landsc. Ecol. 2014, 29, 1741–1758. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of Trees and Grasslands to the Mitigation of Human Heat Stress in a Residential District of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using Green Infrastructure for Urban Climate-Proofing: An Evaluation of Heat Mitigation Measures at the Micro-Scale. Urban For. Urban Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-Functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Meili, N.; Manoli, G.; Burlando, P.; Carmeliet, J.; Chow, W.T.L.; Coutts, A.M.; Roth, M.; Velasco, E.; Vivoni, E.R.; Fatichi, S. Tree Effects on Urban Microclimate: Diurnal, Seasonal, and Climatic Temperature Differences Explained by Separating Radiation, Evapotranspiration, and Roughness Effects. Urban For. Urban Green. 2021, 58, 126970. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Gold, A.; Rötzer, T.; Pauleit, S. Vertical Air Temperature Gradients under the Shade of Two Contrasting Urban Tree Species during Different Types of Summer Days. Sci. Total Environ. 2018, 633, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping Ecosystem Service Supply, Demand and Budgets. Ecol. Indicat. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D.; Kabisch, N. Mapping the Diversity of Regulating Ecosystem Services in European Cities. Global Environ. Change 2014, 26, 119–129. [Google Scholar] [CrossRef]
- Schwarz, N.; Bauer, A.; Haase, D. Assessing Climate Impacts of Planning Policies—An Estimation for the Urban Region of Leipzig (Germany). Environ. Impact Assess. Rev. 2011, 31, 97–111. [Google Scholar] [CrossRef]
- Armson, D. The Effect of Trees and Grass on the Thermal and Hydrological Performance of an Urban Area. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2012. [Google Scholar]
- Konarska, J.; Holmer, B.; Lindberg, F.; Thorsson, S. Influence of Vegetation and Building Geometry on the Spatial Variations of Air Temperature and Cooling Rates in a High-Latitude City: Spatial Variations of Air Temperature in a High Latitude City. Int. J. Climatol. 2016, 36, 2379–2395. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Within Canopy Temperature Differences and Cooling Ability of Tilia Cordata Trees Grown in Urban Conditions. Build. Environ. 2017, 114, 118–128. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor Human Comfort and Thermal Stress: A Comprehensive Review on Models and Standards. Urban Climate 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Mapping and Classifying Green Infrastructure Typologies for Climate-Related Studies Based on Remote Sensing Data. Urban For. Urban Green. 2019, 37, 154–167. [Google Scholar] [CrossRef]
- Paschalis, A.; Chakraborty, T.; Fatichi, S.; Meili, N.; Manoli, G. Urban Forests as Main Regulator of the Evaporative Cooling Effect in Cities. AGU Adv. 2021, 2, e2020AV000303. [Google Scholar] [CrossRef]
- Hesslerová, P.; Pokorný, J.; Brom, J.; Rejšková-Procházková, A. Daily Dynamics of Radiation Surface Temperature of Different Land Cover Types in a Temperate Cultural Landscape: Consequences for the Local Climate. Ecol. Eng. 2013, 54, 145–154. [Google Scholar] [CrossRef]
- Farrugia, S.; Hudson, M.D.; McCulloch, L. An Evaluation of Flood Control and Urban Cooling Ecosystem Services Delivered by Urban Green Infrastructure. Int. J. Biodiv. Sci. Ecosyst. Serv. Manag. 2013, 9, 136–145. [Google Scholar] [CrossRef]
- Becker, G.; Richard, M. The Biotope Area Factor as an Ecological Parameter–Principles for Its Determination and Identification of the Target 1990. Available online: www.berlin.de›bffbiotopflaechenfaktor›auszug_bff_gutachten_1990_eng (accessed on 19 April 2023).
- Kruuse, A. GRaBS Expert Paper 6: The Green Space Factor and the Green Points System; Town and Country Planning Association: London, UK, 2011. [Google Scholar]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.A.; Guerry, A.; Tallis, H.T.; Ricketts, T.; Nelson, E.J.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. VEST 2.2.2 User’s Guide; The Natural Capital, Project; The Nature Conservancy, and World Wildllife Fund; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA, 2011. [Google Scholar]
- Robinson, D. Implications of a Large Global Root Biomass for Carbon Sink Estimates and for Soil Carbon Dynamics. Proc. R. Soc. B 2007, 274, 2753–2759. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon Storage and Sequestration by Trees in Urban and Community Areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef]
- Pulighe, G.; Fava, F.; Lupia, F. Insights and Opportunities from Mapping Ecosystem Services of Urban Green Spaces and Potentials in Planning. Ecosyst. Serv. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Niemelä, J.; Saarela, S.-R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the Ecosystem Services Approach for Better Planning and Conservation of Urban Green Spaces: A Finland Case Study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Tigges, J.; Churkina, G.; Lakes, T. Modeling Above-Ground Carbon Storage: A Remote Sensing Approach to Derive Individual Tree Species Information in Urban Settings. Urban Ecosyst. 2017, 20, 97–111. [Google Scholar] [CrossRef]
- Kareiva, P.M. (Ed.) Natural Capital: Theory & Practice of Mapping Ecosystem Services; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Pechanec, V.; Štěrbová, L.; Purkyt, J.; Prokopová, M.; Včeláková, R.; Cudlín, O.; Vyvlečka, P.; Cienciala, E.; Cudlín, P. Selected Aspects of Carbon Stock Assessment in Aboveground Biomass. Land 2022, 11, 66. [Google Scholar] [CrossRef]
- Haase, D.; Haase, A.; Rink, D. Conceptualizing the Nexus between Urban Shrinkage and Ecosystem Services. Landsc. Urban Plan. 2014, 132, 159–169. [Google Scholar] [CrossRef]
- Ortizbáez, P.; Boisson, S.; Bogaert, J. Analysis of the Urban-Rural Gradient Terminology and Its Imaginaries in a Latin-American Context. Theoret. Emp. Res. Urban Manage. 2020, 15, 81–98. [Google Scholar]
- La Rosa, D.; Geneletti, D.; Spyra, M.; Albert, C.; Fürst, C. Sustainable Planning for Peri-urban Landscapes. In Ecosystem Services from Forest Landscapes; Perera, A.H., Peterson, U., Pastur, G.M., Iverson, L.R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 89–126. [Google Scholar] [CrossRef]
- Stott, I.; Soga, M.; Inger, R.; Gaston, K.J. Land Sparing Is Crucial for Urban Ecosystem Services. Front. Ecol. Environ. 2015, 13, 387–393. [Google Scholar] [CrossRef]
- Soga, M.; Yamaura, Y.; Koike, S.; Gaston, K.J. Land Sharing vs. Land Sparing: Does the Compact City Reconcile Urban Development and Biodiversity Conservation? J. Appl. Ecol. 2014, 51, 1378–1386. [Google Scholar] [CrossRef]
- Nilsson, K.; Nielsen, T.S.; Aalbers, C.; Bell, S.; Boitier, B.; Chery, J.P.; Fertner, C.; Groschowski, M.; Haase, D.; Loibl, W.; et al. Strategies for Sustainable Urban Development and Urban-Rural Linkages. 2014. Available online: https://archive.nordregio.se/Global/EJSD/Research%20briefings/article4.pdf (accessed on 19 April 2023).
- Mörtberg, U.; Wallentinus, H.-G. Red-Listed Forest Bird Species in an Urban Environment—Assessment of Green Space Corridors. Landsc. Urban Plan. 2000, 50, 215–226. [Google Scholar] [CrossRef]
- Turner, T. Greenways, Blueways, Skyways and Other Ways to a Better London. Landsc. Urban Plan. 1995, 33, 269–282. [Google Scholar] [CrossRef]
- Czech Geological Survey. Geological Map of Czech Republic 1:500,000—INSPIRE Harmonized (Theme Geology). 2018. Available online: http://www.geology.cz/extranet/mapy/mapy-online/stahovaci-sluzby (accessed on 15 January 2022).
- Tomášek, M. Soils of the Czech Republic 1:1M (3rd edition, Czech Geological Survey, 2003). Available online: https://micka.geology.cz/en/record/basic/50a4d3c3-8e0c-478a-9629-0d100a010817 (accessed on 15 January 2022).
- Czech Hydrometeorological Institute. Territorial Air Temperature. Available online: https://www.chmi.cz/historicka-data/pocasi/uzemni-teploty?l=en (accessed on 15 January 2022).
- Czech Hydrometeorological Institute Territorial Precipitation. Available online: https://www.chmi.cz/historicka-data/pocasi/uzemni-srazky?l=en (accessed on 15 January 2022).
- Czech Statistical Office Population of Municipalities—1 January 2021. Available online: https://www.czso.cz/csu/czso/population-of-municipalities-1-january-2022 (accessed on 15 January 2022).
- Czech Statistical Office. Historický lexikon obcí ČR 1869–2005-1. díl (Historical lexicon of municipalities in the Czech Republic 1869-2005-Part 1). Available online: https://www.czso.cz/csu/czso/historicky-lexikon-obci-ceske-republiky-2001-877ljn6lu9 (accessed on 15 January 2022).
- European Environment Agency. Copernicus Land Monitoring Service. Corine Land Cover (CLC) 2018, Version 2020_20u1. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 23 March 2020).
- ESRI ‘World Hillshade’, ArcGIS Map Service. 2021. Available online: https://services.arcgisonline.com/arcgis/rest/services/Elevation/World_Hillshade/MapServer (accessed on 20 December 2021).
- ESRI ‘World Topographic Map’, Vector Tile Service. 2021. Available online: https://cdn.arcgis.com/sharing/rest/content/items/7dc6cea0b1764a1f9af2e679f642f0f5/resources/styles/root.json (accessed on 20 December 2021).
- ZK Data 50. Digital Geograpjical Model of Territory of the Czech Republic. 2021. Available online: https://geoportal.cuzk.cz/(S(gleu4yrxornk1uhfid1xcc0t))/Default.aspx?menu=22901&mode=TextMeta&side=mapy_data50&metadataID=CZ-CUZK-DATA50-V (accessed on 20 December 2021).
- Vector Tile Service ‘Open Street Map’. 2021. Available online: https://cdn.arcgis.com/sharing/rest/content/items/3e1a00aeae81496587988075fe529f71/resources/styles/root.json (accessed on 20 December 2021).
- NCA CR ‘Habitat Mapping Layer [Electronic Georeferenced Database]; Version 2014. In Occurrence of Natural and Near-Natural Habitats in the Czech Republic; Nature Conservation Agency of the Czech Republic: Prague, Czech Republic, 2015.
- Chytrý, M.; Kučera, T.; Grulich, V.; Lustyk, P. Katalog Biotopů ČR (Catalog of Habitats in the Czech Republic); AOPK ČR: Praha, Czech Republic, 2010. [Google Scholar]
- Pechanec, V.; Machar, I.; Kilianová, H.; Vyvlečka, P.; Seják, J.; Pokorný, J.; Štěrbová, L.; Prokopová, M.; Cudlín, P. Ranking the Key Forest Habitats in Ecosystem Function Provision: Case Study from Morava River Basin. Forests 2021, 12, 138. [Google Scholar] [CrossRef]
- Larondelle, N.; Hamstead, Z.A.; Kremer, P.; Haase, D.; McPhearson, T. Applying a Novel Urban Structure Classification to Compare the Relationships of Urban Structure and Surface Temperature in Berlin and New York City. Appl. Geogr. 2014, 53, 427–437. [Google Scholar] [CrossRef]
- Wong, C.P.; Jiang, B.; Bohn, T.J.; Lee, K.N.; Lettenmaier, D.P.; Ma, D.; Ouyang, Z. Lake and wetland ecosystem services measuring water storage and local climate regulation. Water Resour. Res. 2017, 53, 3197–3223. [Google Scholar] [CrossRef]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. (Eds.) IPBES 2019: Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; 56p. [Google Scholar] [CrossRef]
- Dobbs, C.; Martinez-Harms, M.J.; Kendal, D. Routledge Handbook of Urban Forestry, Ecosystem Services, 1st ed.; Routledge: Oxfordshire, UK, 2017. [Google Scholar]
- Seják, J.; Cudlín, P. On Measuring the Natural and Environmental Resource Value and Damages. Stud. Ecol. 2010, 4, 53–68. [Google Scholar]
- Seják, J.; Pokorný, J.; Seeley, K. Achieving Sustainable Valuations of Biotopes and Ecosystem Services. Sustainability 2018, 10, 4251. [Google Scholar] [CrossRef]
- Pechanec, V.; Machar, I.; Sterbova, L.; Prokopova, M.; Kilianova, H.; Chobot, K.; Cudlin, P. Monetary Valuation of Natural Forest Habitats in Protected Areas. Forests 2017, 8, 427. [Google Scholar] [CrossRef]
- Seják, J.; Pokorný, J.; Zapletal, M.; Petříček, V.; Guth, J.; Chuman, T.; Romportl, D.; Skořepová, I.; Vacek, V.; Černý, K.; et al. Hodnocení Funkcí a Služeb Ekosystémů České Republiky (Valuation Functions and Services of Ecosystems in the Czech Republic); Faculty of Environment, University Jana Evangelista Purkyně University: Ústí nad Labem, Czech Republic, 2010. [Google Scholar]
- Přibáň, K.; Ondok, J.P.; Jeník, J. Patterns of Temperature and Humidity in Wetland Biotopes. Aquat. Bot. 1986, 25, 191–202. [Google Scholar] [CrossRef]
- Rejšková, A. Non-Metabolic Use of Solar Energy in Plants. Ph.D. Thesis, University of South Bohemia in České Budějovice, Department of Physical Biology, České Budějovice, Czech Republic, 2009. Available online: https://theses.cz/id/d5rj7p/downloadPraceContent_adipIdno_12645?lang=cs (accessed on 20 April 2023).
- Ryszkowski, L. Landscape Ecology in Agroecosystems Management; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Marek, M.V. Carbon in the Ecosystems of the Czech Republic under Changing Climate; Academia: Praha, Czech Republic, 2011. [Google Scholar]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban Green Space Network Development for Biodiversity Conservation: Identification Based on Graph Theory and Gravity Modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A. Remote Sensing of Terrestrial Plant Biodiversity. Remote Sens. Environ. 2019, 231, 111218. [Google Scholar] [CrossRef]
- Chen, W.Y. The Role of Urban Green Infrastructure in Offsetting Carbon Emissions in 35 Major Chinese Cities: A Nationwide Estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Timilsina, N.; Staudhammer, C.L.; Escobedo, F.J.; Lawrence, A. Tree Biomass, Wood Waste Yield, and Carbon Storage Changes in an Urban Forest. Landsc. Urban Plann. 2014, 127, 18–27. [Google Scholar] [CrossRef]
- Farinha-Marques, P.; Fernandes, C.; Guilherme, F.; Lameiras, J.M.; Alves, P.; Bunce, R.G.H. Urban Habitats Biodiversity Assessment (UrHBA): A Standardized Procedure for Recording Biodiversity and Its Spatial Distribution in Urban Environments. Landsc. Ecol. 2017, 32, 1753–1770. [Google Scholar] [CrossRef]
- Hand, K.L.; Freeman, C.; Seddon, P.J.; Stein, A.; van Heezik, Y. A Novel Method for Fine-Scale Biodiversity Assessment and Prediction across Diverse Urban Landscapes Reveals Social Deprivation-Related Inequalities in Private, Not Public Spaces. Landsc. Urban Plan. 2016, 151, 33–44. [Google Scholar] [CrossRef]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the City: Key Challenges for Urban Green Space Management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef]
- Threlfall, C.G.; Mata, L.; Mackie, J.A.; Hahs, A.K.; Stork, N.E.; Williams, N.S.G.; Livesley, S.J. Increasing Biodiversity in Urban Green Spaces through Simple Vegetation Interventions. J. Appl. Ecol. 2017, 54, 1874–1883. [Google Scholar] [CrossRef]
- Lehmann, S. Low Carbon Districts: Mitigating the Urban Heat Island with Green Roof Infrastructure. City Cult. Soc. 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Vico, G.; Revelli, R.; Porporato, A. Ecohydrology of Street Trees: Design and Irrigation Requirements for Sustainable Water Use: Ecohydrology of street trees. Ecohydrology 2014, 7, 508–523. [Google Scholar] [CrossRef]
- Mao, Q.; Huang, G.; Wu, J. Urban ecosystem services: A review. Ying Yong Sheng Tai Xue Bao 2015, 26, 1023–1033. [Google Scholar]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street Greenery and Its Physical and Psychological Impact on Thermal Comfort. Landsc. Urban Plann. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Campagne, C.S.; Roche, P.; Müller, F.; Burkhard, B. Ten Years of Ecosystem Services Matrix: Review of a (r)Evolution. One Ecosyst. 2020, 5, e51103. [Google Scholar] [CrossRef]
- Vačkář, D. ESMERALDA-Enhancing ES Mapping for Policy and Decision Making, Czech Republic Pilot National Assessment of ES. 2016. Available online: https://database.esmeralda-project.eu/assets/pdf/case_study_booklets/WS3%20-%20Case%20Study%20Booklets_Czechia.pdf (accessed on 20 April 2023).
No. | Functional Group | Area (km2) | Evapotranspiration (L·m−2·year−1) | Biomass Prod. (kg·m−2·year−1) |
---|---|---|---|---|
1 | Water bodies | 675 | 600 | 1.67 |
2 | Peatbogs | 23 | 750 | 0.2 |
3 | Other wetlands | 364 | 750 | 2.03 |
4 | Extensively managed mesic meadows and pastures | 2601 | 550 | 1.05 |
5 | Intensively managed mesic meadows and pastures | 5579 | 500 | 1.39 |
6 | Degraded mesic meadows, pastures, and heathlands | 4609 | 400 | 0.8 |
7 | Dry dense grasslands | 40 | 300 | 0.7 |
8 | Dry open grasslands | 172 | 300 | 0.4 |
9 | Xerophilous scrubs | 426 | 300 | 0.8 |
10 | Mesic scrubs | 1959 | 400 | 1.06 |
11 | Wet scrubs | 17 | 600 | 1.16 |
12 | Dry pine forests | 298 | 300 | 0.9 |
13 | Other coniferous forests | 6050 | 500 | 1.56 |
14 | Damaged coniferous forests | 8222 | 400 | 1.25 |
15 | Deciduous forests | 6636 | 700 | 1.79 |
16 | Degraded deciduous forests, culticenosis | 1632 | 500 | 1.28 |
17 | Alluvial forests | 924 | 800 | 2.03 |
18 | Solitary trees, alleys | 1276 | 500 | 1.43 |
19 | Arable land: habitats of cereals and root-crops | 27,605 | 300 | 0.9 |
20 | Arable land: habitats of fodder crops and perennial plants | 141 | 350 | 1.98 |
21 | Areas without vegetation | 2938 | 100 | 0 |
22 | Rocks habitats | 113 | 200 | 0.2 |
23 | Other natural and near-natural habitats | 3780 | 569 | 1.51 |
24 | Other more anthropic affected habitats | 2787 | 342 | 0.96 |
Administrative Territory | Area | Biodiversity | Evapotranspiration | Carbon Production | |||
---|---|---|---|---|---|---|---|
∑ | Ø | ∑ | Ø | ∑ | Ø | ||
(km2) | (million Points) | (points·m−2) | (million L·year−1) | (L·m−2·year−1) | (tC·year−1) | (tC·ha·year−1) | |
Liberec | 106 | 2005 | 18.9 | 49,080 | 463 | 559,582 | 5.27 |
Děčín | 118 | 2659 | 22.6 | 59,035 | 502 | 689,099 | 5.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Včeláková, R.; Prokopová, M.; Pechanec, V.; Štěrbová, L.; Cudlín, O.; Alhuseen, A.M.A.; Purkyt, J.; Cudlín, P. Assessment and Spatial Distribution of Urban Ecosystem Functions Applied in Two Czech Cities. Appl. Sci. 2023, 13, 5759. https://doi.org/10.3390/app13095759
Včeláková R, Prokopová M, Pechanec V, Štěrbová L, Cudlín O, Alhuseen AMA, Purkyt J, Cudlín P. Assessment and Spatial Distribution of Urban Ecosystem Functions Applied in Two Czech Cities. Applied Sciences. 2023; 13(9):5759. https://doi.org/10.3390/app13095759
Chicago/Turabian StyleVčeláková, Renata, Marcela Prokopová, Vilém Pechanec, Lenka Štěrbová, Ondřej Cudlín, Ahmed Mohammed Ahmed Alhuseen, Jan Purkyt, and Pavel Cudlín. 2023. "Assessment and Spatial Distribution of Urban Ecosystem Functions Applied in Two Czech Cities" Applied Sciences 13, no. 9: 5759. https://doi.org/10.3390/app13095759
APA StyleVčeláková, R., Prokopová, M., Pechanec, V., Štěrbová, L., Cudlín, O., Alhuseen, A. M. A., Purkyt, J., & Cudlín, P. (2023). Assessment and Spatial Distribution of Urban Ecosystem Functions Applied in Two Czech Cities. Applied Sciences, 13(9), 5759. https://doi.org/10.3390/app13095759