Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions
Abstract
:1. Introduction
2. Status of Production Volume, Management, and Utilization of Fish Waste
3. Application of Enzymatic Hydrolysis for Fish Protein Isolation
3.1. Endogenous Enzymes
3.2. Enzymes from Microorganisms
3.3. Bioactive Peptides’ Production Using Animal-Based Enzymes
4. Novel Peptides Derived from Enzymatic Hydrolysis of Fish Discards
4.1. Antiproliferative Peptides
4.2. Antimicrobial Peptides
4.3. Antioxidative Peptides
4.4. ACE-Inhibitory Peptides
4.5. Dipeptylpeptidase-IV (DPP-IV)-Inhibitory Peptides
5. Characterization of Novel Bioactive Peptides
5.1. Purification and Identification of Peptides Using One-Dimensional Separation Systems
5.1.1. Membrane Fractionation (Ultrafiltration and Nanofiltration)
5.1.2. Gel Filtration (Size-Exclusion Chromatography)
5.1.3. Reverse-Phase High-Performance Liquid Chromatography
5.2. Amino Acid Analysis
6. Outlook and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Amino Acid |
GF | Gel Filtration |
LC | Liquid Chromatography |
MS | Mass Spectrometry |
MA-IML | Metal Affinity Immobilized Magnetic Liposome |
MD | Molecular Docking |
RP-HPLC | Reverse-Phase High-Performance Liquid Chromatography |
SSF | Solid-State Fermentation |
References
- Sharma, V.; Tsai, M.-L.; Chen, C.-W.; Sun, P.-P.; Patel, A.K.; Singhania, R.R.; Nargotra, P.; Dong, C.-D. Deep Eutectic Solvents as Promising Pretreatment Agents for Sustainable Lignocellulosic Biorefineries: A Review. Bioresour. Technol. 2022, 360, 127631. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Tsai, M.-L.; Nargotra, P.; Chen, C.-W.; Sun, P.-P.; Singhania, R.R.; Patel, A.K.; Dong, C.-D. Journey of Lignin from a Roadblock to Bridge for Lignocellulose Biorefineries: A Comprehensive Review. Sci. Total Environ. 2023, 861, 160560. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Nargotra, P.; Bajaj, B.K. Ultrasound and Surfactant Assisted Ionic Liquid Pretreatment of Sugarcane Bagasse for Enhancing Saccharification Using Enzymes from an Ionic Liquid Tolerant Aspergillus assiutensis VS34. Bioresour. Technol. 2019, 285, 121319. [Google Scholar] [CrossRef] [PubMed]
- Nargotra, P.; Sharma, V.; Bajaj, B.K. Consolidated Bioprocessing of Surfactant-Assisted Ionic Liquid-Pretreated Parthenium hysterophorus L. Biomass for Bioethanol Production. Bioresour. Technol. 2019, 289, 121611. [Google Scholar] [CrossRef] [PubMed]
- Nargotra, P.; Sharma, V.; Sharma, S.; Bangotra, R.; Bajaj, B.K. Purification of an Ionic Liquid Stable Cellulase from Aspergillus Aculeatus PN14 with Potential for Biomass Refining. Environ. Sustain. 2022, 5, 313–323. [Google Scholar] [CrossRef]
- Sharma, V.; Tsai, M.-L.; Nargotra, P.; Chen, C.-W.; Kuo, C.-H.; Sun, P.-P.; Dong, C.-D. Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts 2022, 12, 1373. [Google Scholar] [CrossRef]
- Sharma, V.; Tsai, M.-L.; Sun, P.-P.; Chen, C.-W.; Nargotra, P.; Dong, C.-D. Sequential Ultrasound Assisted Deep Eutectic Solvent-Based Protein Extraction from Sacha Inchi Meal Biomass: Towards Circular Bioeconomy. J. Food Sci. Technol. 2023, 60, 1425–1434. [Google Scholar] [CrossRef]
- Nargotra, P.; Sharma, V.; Lee, Y.-C.; Tsai, Y.-H.; Liu, Y.-C.; Shieh, C.-J.; Tsai, M.-L.; Dong, C.-D.; Kuo, C.-H. Microbial Lignocellulolytic Enzymes for the Effective Valorization of Lignocellulosic Biomass: A Review. Catalysts 2023, 13, 83. [Google Scholar] [CrossRef]
- Global Fisheries and Aquaculture at a Glance. Available online: https://www.fao.org/3/cc0461en/online/sofia/2022/world-fisheries-aquaculture.html (accessed on 7 March 2023).
- Ishak, N.H.; Sarbon, N.M. A Review of Protein Hydrolysates and Bioactive Peptides Deriving from Wastes Generated by Fish Processing. Food Bioprocess. Technol. 2018, 11, 2–16. [Google Scholar] [CrossRef]
- Fish Silage Production and Use in the Caribbean: Feasibility Study for Barbados and Saint Kitts and Nevis; FAO: Rome, Italy, 2020; ISBN 978-92-5-133233-7.
- González-Serrano, D.J.; Hadidi, M.; Varcheh, M.; Jelyani, A.Z.; Moreno, A.; Lorenzo, J.M. Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties. Antioxidants 2022, 11, 509. [Google Scholar] [CrossRef]
- Cooney, R.; de Sousa, D.B.; Fernández-Ríos, A.; Mellett, S.; Rowan, N.; Morse, A.P.; Hayes, M.; Laso, J.; Regueiro, L.; Wan, A.H.L.; et al. A Circular Economy Framework for Seafood Waste Valorisation to Meet Challenges and Opportunities for Intensive Production and Sustainability. J. Clean. Prod. 2023, 392, 136283. [Google Scholar] [CrossRef]
- Gicana, R.G.; Yeh, F.-I.; Hsiao, T.-H.; Chiang, Y.-R.; Yan, J.-S.; Wang, P.-H. Valorization of Fish Waste and Sugarcane Bagasse for Alcalase Production by Bacillus megaterium via a Circular Bioeconomy Model. J. Taiwan Inst. Chem. Eng. 2022, 135, 104358. [Google Scholar] [CrossRef]
- Ozogul, F.; Cagalj, M.; Šimat, V.; Ozogul, Y.; Tkaczewska, J.; Hassoun, A.; Kaddour, A.A.; Kuley, E.; Rathod, N.B.; Phadke, G.G. Recent Developments in Valorisation of Bioactive Ingredients in Discard/Seafood Processing by-Products. Trends Food Sci. Technol. 2021, 116, 559–582. [Google Scholar] [CrossRef]
- Petrova, I.; Tolstorebrov, I.; Eikevik, T.M. Production of Fish Protein Hydrolysates Step by Step: Technological Aspects, Equipment Used, Major Energy Costs and Methods of Their Minimizing. Int. Aquat. Res. 2018, 10, 223–241. [Google Scholar] [CrossRef]
- Jenkelunas, P.J.; Li-Chan, E.C.Y. Production and Assessment of Pacific Hake (Merluccius productus) Hydrolysates as Cryoprotectants for Frozen Fish Mince. Food Chem. 2018, 239, 535–543. [Google Scholar] [CrossRef]
- Bai, C.; Wei, Q.; Ren, X. Selective Extraction of Collagen Peptides with High Purity from Cod Skins by Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 7220–7227. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Leonardo, I.C.; Gaspar, F.B.; Roseiro, L.C.; Duarte, A.R.C.; Matias, A.A.; Paiva, A. Unveiling the Potential of Betaine/Polyol-Based Deep Eutectic Systems for the Recovery of Bioactive Protein Derivative-Rich Extracts from Sardine Processing Residues. Sep. Purif. Technol. 2021, 276, 119267. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Santivarangkna, C.; Rajput, M.S.; Benjakul, S.; Maqsood, S. Valorization of Fish Byproducts: Sources to End-Product Applications of Bioactive Protein Hydrolysate. Comp. Rev. Food Sci. Food Saf. 2022, 21, 1803–1842. [Google Scholar] [CrossRef]
- Sharma, V.; Nargotra, P.; Sharma, S.; Sawhney, D.; Vaid, S.; Bangotra, R.; Dutt, H.C.; Bajaj, B.K. Microwave Irradiation-Assisted Ionic Liquid or Deep Eutectic Solvent Pretreatment for Effective Bioconversion of Sugarcane Bagasse to Bioethanol. Energy Ecol. Environ. 2023, 8, 141–156. [Google Scholar] [CrossRef]
- Sharma, V.; Nargotra, P.; Sharma, S.; Bajaj, B.K. Efficacy and Functional Mechanisms of a Novel Combinatorial Pretreatment Approach Based on Deep Eutectic Solvent and Ultrasonic Waves for Bioconversion of Sugarcane Bagasse. Renew Energy 2021, 163, 1910–1922. [Google Scholar] [CrossRef]
- Sharma, V.; Bhat, B.; Gupta, M.; Vaid, S.; Sharma, S.; Nargotra, P.; Singh, S.; Bajaj, B.K. Role of Systematic Biology in Biorefining of Lignocellulosic Residues for Biofuels and Chemicals Production. In Sustainable Biotechnology-Enzymatic Resources of Renewable Energy; Singh, O.V., Chandel, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 5–55. ISBN 978-3-319-95480-6. [Google Scholar]
- Nargotra, P.; Sharma, V.; Sharma, S.; Kapoor, N.; Bajaj, B.K. Development of Consolidated Bioprocess for Biofuel-Ethanol Production from Ultrasound-Assisted Deep Eutectic Solvent Pretreated Parthenium hysterophorus Biomass. Biomass Conv. Bioref. 2020, 12, 5767–5782. [Google Scholar] [CrossRef]
- Nargotra, P.; Vaid, S.; Bajaj, B.K. Cellulase Production from Bacillus Subtilis SV1 and Its Application Potential for Saccharification of Ionic Liquid Pretreated Pine Needle Biomass under One Pot Consolidated Bioprocess. Fermentation 2016, 2, 19. [Google Scholar] [CrossRef]
- Sharma, S.; Tsai, M.-L.; Sharma, V.; Sun, P.-P.; Nargotra, P.; Bajaj, B.K.; Chen, C.-W.; Dong, C.-D. Environment Friendly Pretreatment Approaches for the Bioconversion of Lignocellulosic Biomass into Biofuels and Value-Added Products. Environments 2023, 10, 6. [Google Scholar] [CrossRef]
- Sharma, V.; Nargotra, P.; Sharma, S.; Bajaj, B.K. Efficient Bioconversion of Sugarcane Tops Biomass into Biofuel-Ethanol Using an Optimized Alkali-Ionic Liquid Pretreatment Approach. Biomass Conv. Bioref. 2020, 13, 841–854. [Google Scholar] [CrossRef]
- Sharma, S.; Nargotra, P.; Sharma, V.; Bangotra, R.; Kaur, M.; Kapoor, N.; Paul, S.; Bajaj, B.K. Nanobiocatalysts for Efficacious Bioconversion of Ionic Liquid Pretreated Sugarcane Tops Biomass to Biofuel. Bioresour. Technol. 2021, 333, 125191. [Google Scholar] [CrossRef]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish Waste: From Problem to Valuable Resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef]
- Ahuja, I.; Dauksas, E.; Remme, J.F.; Richardsen, R.; Løes, A.-K. Fish and Fish Waste-Based Fertilizers in Organic Farming—With Status in Norway: A Review. Waste Manag. 2020, 115, 95–112. [Google Scholar] [CrossRef]
- Alfio, V.G.; Manzo, C.; Micillo, R. From Fish Waste to Value: An Overview of the Sustainable Recovery of Omega-3 for Food Supplements. Molecules 2021, 26, 1002. [Google Scholar] [CrossRef]
- Araujo, J.; Sica, P.; Costa, C.; Márquez, M.C. Enzymatic Hydrolysis of Fish Waste as an Alternative to Produce High Value-Added Products. Waste Biomass. Valor. 2021, 12, 847–855. [Google Scholar] [CrossRef]
- Esua, O.J.; Sun, D.-W.; Cheng, J.-H.; Wang, H.; Chen, C. Hybridising Plasma Functionalized Water and Ultrasound Pretreatment for Enzymatic Protein Hydrolysis of Larimichthys polyactis: Parametric Screening and Optimization. Food Chem. 2022, 385, 132677. [Google Scholar] [CrossRef]
- Tang, S.; Ma, Y.; Dong, X.; Zhou, H.; He, Y.; Ren, D.; Wang, Q.; Yang, H.; Liu, S.; Wu, L. Enzyme-Assisted Extraction of Fucoidan from Kjellmaniella crassifolia Based on Kinetic Study of Enzymatic Hydrolysis of Algal Cellulose. Algal Res. 2022, 66, 102795. [Google Scholar] [CrossRef]
- Castañeda-Valbuena, D.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Morellon-Sterling, R.; Tacias-Pascacio, V.G. Biological Activities of Peptides Obtained by Pepsin Hydrolysis of Fishery Products. Process Biochem. 2022, 120, 53–63. [Google Scholar] [CrossRef]
- Nong, N.T.P.; Hsu, J.-L. Bioactive Peptides: An Understanding from Current Screening Methodology. Processes 2022, 10, 1114. [Google Scholar] [CrossRef]
- Foh, M.B.K.; Amadou, I.; Foh, B.M.; Kamara, M.T.; Xia, W. Functionality and Antioxidant Properties of Tilapia (Oreochromis niloticus) as Influenced by the Degree of Hydrolysis. Int. J. Mol. Sci. 2010, 11, 1851–1869. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Howieson, J.; Fotedar, R.; Partridge, G.J. Enzymatic Fish Protein Hydrolysates in Finfish Aquaculture: A Review. Rev. Aqua. 2021, 13, 406–430. [Google Scholar] [CrossRef]
- Dent, T.; Maleky, F. Pulse Protein Processing: The Effect of Processing Choices and Enzymatic Hydrolysis on Ingredient Functionality. Crit Rev. Food Sci. 2022, 62, 1–12. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Sahin, A.W.; Arendt, E.K.; Zannini, E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods 2022, 11, 1307. [Google Scholar] [CrossRef]
- Mathew, G.M.; Huang, C.C.; Sindhu, R.; Binod, P.; Pandey, A. Chapter 15—Enzymes in Seafood Processing. In Value-Addition in Food Products and Processing Through Enzyme Technology; Kuddus, M., Aguilar, C.N., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 189–204. ISBN 978-0-323-89929-1. [Google Scholar]
- Johnson, K.S.; Clements, K.D. Histology and Ultrastructure of the Gastrointestinal Tract in Four Temperate Marine Herbivorous Fishes. J. Morphol. 2022, 283, 16–34. [Google Scholar] [CrossRef]
- Shahidi, F.; Botta, J.R. Seafoods: Chemistry, Processing Technology and Quality; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-1-4615-2181-5. [Google Scholar]
- Haard, N.F.; Simpson, B.K. Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-8247-0326-4. [Google Scholar]
- Ortizo, R.; Nuñal, S.; Nillos, M.G.; Yap, E.E. Antioxidative Activities and Lactic Acid Bacteria Composition of Fermented Frigate Tuna Auxis thazard (Lacepéde, 1800) at Different Salt-Fish Ratios. Asian Fish. Sci. 2020, 33, 10–22. [Google Scholar] [CrossRef]
- Yang, F.; Rustad, T.; Xu, Y.; Jiang, Q.; Xia, W. Endogenous Proteolytic Enzymes—A Study of Their Impact on Cod (Gadus morhua) Muscle Proteins and Textural Properties in a Fermented Product. Food Chem. 2015, 172, 551–558. [Google Scholar] [CrossRef]
- Li, N.; Xie, J.; Chu, Y.M. Degradation and Evaluation of Myofibril Proteins Induced by Endogenous Protease in Aquatic Products during Storage: A Review. Food Sci. Biotechnol. 2023, 32, 1–14. [Google Scholar] [CrossRef]
- Contesini, F.J.; de Melo, R.R.; Sato, H.H. An Overview of Bacillus Proteases: From Production to Application. Crit. Rev. Biotechnnol. 2018, 38, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Liu, Y.; Luan, H.; Zhu, W.; Li, X.; Li, J. Changes in Protease Activity during Fermentation of Fish Sauce and Their Correlation with Antioxidant Activity. J. Sci. Food Agric. 2022, 102, 3150–3159. [Google Scholar] [CrossRef] [PubMed]
- Sripokar, P.; Zhang, Y.; Simpson, B.K.; Hansen, E.B.; Maneerat, S.; Klomklao, S. Autolysis and the Endogenous Proteinases Characterised in Beardless Barb (Anematichthys Apogon) Muscle. Int. J. Food Sci. Technol. 2021, 56, 6368–6375. [Google Scholar] [CrossRef]
- Lu, Y.; Teo, J.N.; Liu, S.Q. Fermented Shellfish Condiments: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4447–4477. [Google Scholar] [CrossRef]
- Samaranayaka, A.G.P.; Li-Chan, E.C.Y. Autolysis-Assisted Production of Fish Protein Hydrolysates with Antioxidant Properties from Pacific Hake (Merluccius productus). Food Chem. 2008, 107, 768–776. [Google Scholar] [CrossRef]
- Dos Santos, S.D.; Martins, V.G.; Salas-Mellado, M.; Prentice, C. Evaluation of Functional Properties in Protein Hydrolysates from Bluewing Searobin (Prionotus punctatus) Obtained with Different Microbial Enzymes. Food Bioproc. Technol. 2011, 4, 1399–1406. [Google Scholar] [CrossRef]
- Heffernan, S.; Giblin, L.; O’Brien, N. Assessment of the Biological Activity of Fish Muscle Protein Hydrolysates Using In Vitro Model Systems. Food Chem. 2021, 359, 129852. [Google Scholar] [CrossRef]
- Shen, Q.; Guo, R.; Dai, Z.; Zhang, Y. Investigation of Enzymatic Hydrolysis Conditions on the Properties of Protein Hydrolysate from Fish Muscle (Collichthys niveatus) and Evaluation of Its Functional Properties. J. Agric. Food Chem. 2012, 60, 5192–5198. [Google Scholar] [CrossRef]
- Jemil, I.; Abdelhedi, O.; Nasri, R.; Mora, L.; Jridi, M.; Aristoy, M.-C.; Toldrá, F.; Nasri, M. Novel Bioactive Peptides from Enzymatic Hydrolysate of Sardinelle (Sardinella Aurita) Muscle Proteins Hydrolysed by Bacillus subtilis A26 Proteases. Food Res. Int. 2017, 100, 121–133. [Google Scholar] [CrossRef]
- Sukkhown, P.; Pirak, T.; Jangchud, K.; Prinyawiwatkul, W. Novel Peptides from Dried Squid Head By-Products Obtained from Snack Process. Int. J. Food Sci. Technol. 2021, 56, 5506–5517. [Google Scholar] [CrossRef]
- Phetchthumrongchai, T.; Tachapuripunya, V.; Chintong, S.; Roytrakul, S.; E.-kobon, T.; Klaypradit, W. Properties of Protein Hydrolysates and Bioinformatics Prediction of Peptides Derived from Thermal and Enzymatic Process of Skipjack Tuna (Katsuwonus pelamis) Roe. Fishes 2022, 7, 255. [Google Scholar] [CrossRef]
- Su, Y.; Chen, S.; Cai, S.; Liu, S.; Pan, N.; Su, J.; Qiao, K.; Xu, M.; Chen, B.; Yang, S.; et al. A Novel Angiotensin-I-Converting Enzyme (ACE) Inhibitory Peptide from Takifugu Flavidus. Mar. Drugs 2021, 19, 651. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, Y.; Zhou, S.; Chen, S.; Wu, Y.; Li, L.; Yang, X. Purification and Identification of Novel Xanthine Oxidase Inhibitory Peptides Derived from Round Scad (Decapterus maruadsi) Protein Hydrolysates. Mar. Drugs 2021, 19, 538. [Google Scholar] [CrossRef]
- Sheng, Y.; Qiu, Y.-T.; Wang, Y.-M.; Chi, C.-F.; Wang, B. Novel Antioxidant Collagen Peptides of Siberian Sturgeon (Acipenserbaerii) Cartilages: The Preparation, Characterization, and Cytoprotection of H2O2-Damaged Human Umbilical Vein Endothelial Cells (HUVECs). Mar. Drugs 2022, 20, 325. [Google Scholar] [CrossRef]
- Suo, S.-K.; Zheng, S.-L.; Chi, C.-F.; Luo, H.-Y.; Wang, B. Novel Angiotensin-Converting Enzyme Inhibitory Peptides from Tuna Byproducts—Milts: Preparation, Characterization, Molecular Docking Study, and Antioxidant Function on H2O2-Damaged Human Umbilical Vein Endothelial Cells. Front. Nutr. 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Ding, S.; Qi, B. Isolation and Identification of Novel Antioxidant and Antimicrobial Oligopeptides from Enzymatically Hydrolyzed Anchovy Fish Meal. Process Biochem. 2018, 74, 148–155. [Google Scholar] [CrossRef]
- Krichen, F.; Sila, A.; Caron, J.; Kobbi, S.; Nedjar, N.; Miled, N.; Blecker, C.; Besbes, S.; Bougatef, A. Identification and Molecular Docking of Novel ACE Inhibitory Peptides from Protein Hydrolysates of Shrimp Waste. Eng. Life Sci. 2018, 18, 682–691. [Google Scholar] [CrossRef]
- Li, S.; Tian, Q.; Meng, T.; Guan, Z.; Cai, Y.; Liao, X. Production, Purification and Activity Evaluation of Three Novel Antioxidant Peptides Obtained from Grass Carp (Ctenopharyngodon idela) Scale Waste by Microbial Protease BaApr1 Hydrolysis. Syst. Microbiol. Biomanuf. 2022, 2, 568–579. [Google Scholar] [CrossRef]
- Kaewsahnguan, T.; Noitang, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. A Novel Angiotensin I-Converting Enzyme Inhibitory Peptide Derived from the Trypsin Hydrolysates of Salmon Bone Proteins. PLoS ONE 2021, 16, e0256595. [Google Scholar] [CrossRef]
- Wang, K.; Siddanakoppalu, P.N.; Ahmed, I.; Pavase, T.R.; Lin, H.; Li, Z. Purification and Identification of Anti-Allergic Peptide from Atlantic Salmon (Salmo salar) Byproduct Enzymatic Hydrolysates. J. Funct. Foods 2020, 72, 104084. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, X.; Zhuang, Y. Purification and Characterization of Novel Antioxidant Peptides from Enzymatic Hydrolysates of Tilapia (Oreochromis niloticus) Skin Gelatin. Peptides 2012, 38, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Guerard, F. 6—Enzymatic Methods for Marine by-Products Recovery. In Maximising the Value of Marine By-Products; Shahidi, F., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridgeshire, UK, 2007; pp. 107–143. ISBN 978-1-84569-013-7. [Google Scholar]
- Chel-Guerrero, L.; Cua-Aguayo, D.; Betancur-Ancona, D.; Chuc-Koyoc, A.; Aranda-González, I.; Gallegos-Tintoré, S. Antioxidant and Chelating Activities from Lion Fish (Pterois volitans L.) Muscle Protein Hydrolysates Produced by in Vitro Digestion Using Pepsin and Pancreatin. Emir. J. Food Agric. 2020, 32, 62–72. [Google Scholar] [CrossRef]
- Taheri, A.; Bakhshizadeh, G.A. Antioxidant and ACE Inhibitory Activities of Kawakawa (Euthynnus affinis) Protein Hydrolysate Produced by Skipjack Tuna Pepsin. J. Aquat. Food Prod. Technol. 2020, 29, 148–166. [Google Scholar] [CrossRef]
- Hassan, M.A.; Xavier, M.; Gupta, S.; Nayak, B.B.; Balange, A.K. Antioxidant Properties and Instrumental Quality Characteristics of Spray Dried Pangasius visceral Protein Hydrolysate Prepared by Chemical and Enzymatic Methods. Environ. Sci. Pollut. Res. 2019, 26, 8875–8884. [Google Scholar] [CrossRef]
- Gao, R.; Shu, W.; Shen, Y.; Sun, Q.; Jin, W.; Li, D.; Li, Y.; Yuan, L. Peptide Fraction from Sturgeon Muscle by Pepsin Hydrolysis Exerts Anti-Inflammatory Effects in LPS-Stimulated RAW 264.7 Macrophages via MAPK and NF-ΚB Pathways. Food Sci. Hum. Wellness 2021, 10, 103–111. [Google Scholar] [CrossRef]
- Shaik, M.I.; Sarbon, N.M. A Review on Purification and Characterization of Anti-Proliferative Peptides Derived from Fish Protein Hydrolysate. Food Rev. Int. 2022, 38, 1389–1409. [Google Scholar] [CrossRef]
- Yaghoubzadeh, Z.; Peyravii Ghadikolaii, F.; Kaboosi, H.; Safari, R.; Fattahi, E. Antioxidant Activity and Anticancer Effect of Bioactive Peptides from Rainbow Trout (Oncorhynchus mykiss) Skin Hydrolysate. Int. J. Pept. Res. Ther. 2020, 26, 625–632. [Google Scholar] [CrossRef]
- Kandyliari, A.; Golla, J.P.; Chen, Y.; Papandroulakis, N.; Kapsokefalou, M.; Vasiliou, V. Antiproliferative Activity of Protein Hydrolysates Derived from Fish By-Products on Human Colon and Breast Cancer Cells. Proc. Nutr. Soc. 2020, 79, E282. [Google Scholar] [CrossRef]
- Hamzeh, A.; Rezaei, M.; Khodabandeh, S.; Motamedzadegan, A.; Noruzinia, M. Antiproliferative and Antioxidative Activities of Cuttlefish (Sepia pharaonis) Protein Hydrolysates as Affected by Degree of Hydrolysis. Food Meas. 2018, 12, 721–727. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Y.; Ye, L.; Tang, Y.; Ding, G.; Zhang, X.; Yang, Z. A Novel Anti-proliferative Pentapeptide (ILYMP) Isolated from Cyclina Sinensis Protein Hydrolysate Induces Apoptosis of DU-145 Prostate Cancer Cells. Mol. Med. Rep. 2018, 18, 771–778. [Google Scholar] [CrossRef]
- Phadke, G.G.; Rathod, N.B.; Ozogul, F.; Elavarasan, K.; Karthikeyan, M.; Shin, K.-H.; Kim, S.-K. Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Mar. Drugs 2021, 19, 480. [Google Scholar] [CrossRef]
- Naghdi, S.; Lorenzo, J.M.; Mirnejad, R.; Ahmadvand, M.; Moosazadeh Moghaddam, M. Bioactivity Evaluation of Peptide Fractions from Bighead Carp (Hypophthalmichthys nobilis) Using Alcalase and Hydrolytic Enzymes Extracted from Oncorhynchus Mykiss and Their Potential to Develop the Edible Coats. Food Bioproc. Technol. 2023, 16, 1–21. [Google Scholar] [CrossRef]
- Park, C.B.; Lee, J.H.; Park, I.Y.; Kim, M.S.; Kim, S.C. A Novel Antimicrobial Peptide from the Loach, Misgurnus anguillicaudatus. FEBS Lett. 1997, 411, 173–178. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, H.; Wang, L.; Qian, H. Membrane-Disruptive Property of a Novel Antimicrobial Peptide from Anchovy (Engraulis japonicus) Hydrolysate. Int. J. Food Sci. Technol. 2014, 49, 969–975. [Google Scholar] [CrossRef]
- Zhang, D.L.; Guan, R.Z.; Huang, W.S.; Xiong, J. Isolation and Characterization of a Novel Antibacterial Peptide Derived from Hemoglobin Alpha in the Liver of Japanese Eel, Anguilla japonica. Fish Shellfish Immunol. 2013, 35, 625–631. [Google Scholar] [CrossRef]
- Seo, J.-K.; Lee, M.J.; Go, H.-J.; Park, T.H.; Park, N.G. Purification and Characterization of YFGAP, a GAPDH-Related Novel Antimicrobial Peptide, from the Skin of Yellowfin Tuna, Thunnus albacares. Fish Shellfish Immunol. 2012, 33, 743–752. [Google Scholar] [CrossRef]
- Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Najafian, L.; Babji, A.S. Isolation, Purification and Identification of Three Novel Antioxidative Peptides from Patin (Pangasius sutchi) Myofibrillar Protein Hydrolysates. LWT-Food Sci. Technol. 2015, 60, 452–461. [Google Scholar] [CrossRef]
- Bashir, K.M.I.; Sohn, J.H.; Kim, J.-S.; Choi, J.-S. Identification and Characterization of Novel Antioxidant Peptides from Mackerel (Scomber japonicus) Muscle Protein Hydrolysates. Food Chem. 2020, 323, 126809. [Google Scholar] [CrossRef]
- Saidi, S.; Saoudi, M.; Ben Amar, R. Valorisation of Tuna Processing Waste Biomass: Isolation, Purification and Characterisation of Four Novel Antioxidant Peptides from Tuna by-Product Hydrolysate. Environ. Sci. Pollut. Res. 2018, 25, 17383–17392. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Jung, H.Y.; Kim, J.K. Identification and Characterisation of a Novel Heptapeptide Mackerel By-Product Hydrolysate, and Its Potential as a Functional Fertiliser Component. J. Chromatogr. B 2021, 1180, 122881. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liao, W.; Udenigwe, C.C. Revisiting the Mechanisms of ACE Inhibitory Peptides from Food Proteins. Trends Food Sci. Technol. 2017, 69, 214–219. [Google Scholar] [CrossRef]
- Aissaoui, N.; Abidi, F.; Hardouin, J.; Abdelkafi, Z.; Marrakchi, N.; Jouenne, T.; Marzouki, M.N. ACE Inhibitory and Antioxidant Activities of Novel Peptides from Scorpaena notata By-Product Protein Hydrolysate. Int. J. Pept Res. Ther. 2017, 23, 13–23. [Google Scholar] [CrossRef]
- Aissaoui, N.; Abidi, F.; Hardouin, J.; Abdelkafi, Z.; Marrakchi, N.; Jouenne, T.; Marzouki, M.N. Two Novel Peptides with Angiotensin I Converting Enzyme Inhibitory and Antioxidative Activities from Scorpaena Notata Muscle Protein Hydrolysate. Biotechnol. Appl. Biochem. 2017, 64, 201–210. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhong, Q.; Wu, Y.; Xia, W. Purification and Characterization of a Novel Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide Derived from Enzymatic Hydrolysate of Grass Carp Protein. Peptides 2012, 33, 52–58. [Google Scholar] [CrossRef]
- Lee, S.-H.; Qian, Z.-J.; Kim, S.-K. A Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Tuna Frame Protein Hydrolysate and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2010, 118, 96–102. [Google Scholar] [CrossRef]
- Zheng, S.-L.; Luo, Q.-B.; Suo, S.-K.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Preparation, Identification, Molecular Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Muscle. Mar. Drugs 2022, 20, 176. [Google Scholar] [CrossRef]
- Jin, R.; Teng, X.; Shang, J.; Wang, D.; Liu, N. Identification of Novel DPP–IV Inhibitory Peptides from Atlantic Salmon (Salmo salar) Skin. Food Res. Int. 2020, 133, 109161. [Google Scholar] [CrossRef]
- Kula, E.; Kocadag Kocazorbaz, E.; Moulahoum, H.; Alpat, S.; Zihnioglu, F. Extraction and Characterization of Novel Multifunctional Peptides from Trachinus draco (Greater Weever) Myofibrillar Proteins with ACE/DPP4 Inhibitory, Antioxidant, and Metal Chelating Activities. J. Food Biochem. 2020, 44, e13179. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. Biomed Res. Int. 2017, 2017, e9746720. [Google Scholar] [CrossRef]
- Ghalamara, S.; Coscueta, E.R.; Silva, S.; Brazinha, C.; Pereira, C.D.; Pintado, M.E. Integrated Ultrafiltration, Nanofiltration, and Reverse Osmosis Pilot Process to Produce Bioactive Protein/Peptide Fractions from Sardine Cooking Effluent. J. Environ. Manag. 2022, 317, 115344. [Google Scholar] [CrossRef]
- Vandanjon, L.; Johannsson, R.; Derouiniot, M.; Bourseau, P.; Jaouen, P. Concentration and Purification of Blue Whiting Peptide Hydrolysates by Membrane Processes. J. Food Eng. 2007, 83, 581–589. [Google Scholar] [CrossRef]
- Chabeaud, A.; Vandanjon, L.; Bourseau, P.; Jaouen, P.; Chaplain-Derouiniot, M.; Guerard, F. Performances of Ultrafiltration Membranes for Fractionating a Fish Protein Hydrolysate: Application to the Refining of Bioactive Peptidic Fractions. Sep. Purif. Technol. 2009, 66, 463–471. [Google Scholar] [CrossRef]
- Roslan, J.; Mustapa Kamal, S.M.; Md Yunos, K.F.; Abdullah, N. Assessment on Multilayer Ultrafiltration Membrane for Fractionation of Tilapia By-Product Protein Hydrolysate with Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity. Sep. Purif. Technol. 2017, 173, 250–257. [Google Scholar] [CrossRef]
- Pezeshk, S.; Ojagh, S.M.; Rezaei, M.; Shabanpour, B. Fractionation of Protein Hydrolysates of Fish Waste Using Membrane Ultrafiltration: Investigation of Antibacterial and Antioxidant Activities. Probiotics Antimicrob. Prot. 2019, 11, 1015–1022. [Google Scholar] [CrossRef]
- Alele, N.; Ulbricht, M. Membrane-Based Purification of Proteins from Nanoparticle Dispersions: Influences of Membrane Type and Ultrafiltration Conditions. Sep. Pur. Technol. 2016, 158, 171–182. [Google Scholar] [CrossRef]
- Vandanjon, L.; Grignon, M.; Courois, E.; Bourseau, P.; Jaouen, P. Fractionating White Fish Fillet Hydrolysates by Ultrafiltration and Nanofiltration. J. Food Eng. 2009, 95, 36–44. [Google Scholar] [CrossRef]
- Picot, L.; Ravallec, R.; Fouchereau-Péron, M.; Vandanjon, L.; Jaouen, P.; Chaplain-Derouiniot, M.; Guérard, F.; Chabeaud, A.; LeGal, Y.; Alvarez, O.M.; et al. Impact of Ultrafiltration and Nanofiltration of an Industrial Fish Protein Hydrolysate on Its Bioactive Properties. J. Sci. Food Agric. 2010, 90, 1819–1826. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, J.; Huang, T.; Bassey, A.P.; Huang, M.; Huang, J. The Generation and Application of Antioxidant Peptides Derived from Meat Protein: A Review. Food Sci. Anim. Resour. 2023, 1, 1–14. [Google Scholar] [CrossRef]
- Hu, X.; Dai, Z.; Jin, R. Purification and Identification of a Novel Angiotensin Converting Enzyme Inhibitory Peptide from the Enzymatic Hydrolysate of Lepidotrigla microptera. Foods 2022, 11, 1889. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Wang, S.; Jing, L.; Yao, D. Purification and Characterisation of a Novel Angiotensin-I Converting Enzyme (ACE)-Inhibitory Peptide Derived from the Enzymatic Hydrolysate of Enteromorpha clathrata Protein. Food Chem. 2016, 211, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gong, Y.-D.; Li, Z.-R.; Yu, D.; Chi, C.-F.; Ma, J.-Y. Isolation and Characterisation of Five Novel Antioxidant Peptides from Ethanol-Soluble Proteins Hydrolysate of Spotless Smoothhound (Mustelus griseus) Muscle. J. Funct. Foods 2014, 6, 176–185. [Google Scholar] [CrossRef]
- Maalej, H.; Maalej, A.; Affes, S.; Hmidet, N.; Nasri, M. A Novel Digestive α-Amylase from Blue Crab (Portunus segnis) Viscera: Purification, Biochemical Characterization and Application for the Improvement of Antioxidant Potential of Oat Flour. Int. J. Mol. Sci. 2021, 22, 1070. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Y.; Hou, X.; Lu, Y.; Meng, H.; Pei, S.; Dai, Z.; Wu, S. Separation and Identification of ACE Inhibitory Peptides from Lizard Fish Proteins Hydrolysates by Metal Affinity-Immobilized Magnetic Liposome. Protein Expr. Purif. 2022, 191, 106027. [Google Scholar] [CrossRef]
- Robert, M.; Zatylny-Gaudin, C.; Fournier, V.; Corre, E.; Le Corguillé, G.; Bernay, B.; Henry, J. Molecular Characterization of Peptide Fractions of a Tilapia (Oreochromis niloticus) by-Product Hydrolysate and in Vitro Evaluation of Antibacterial Activity. Process Biochem. 2015, 50, 487–492. [Google Scholar] [CrossRef]
- Girgih, A.T.; Udenigwe, C.C.; Hasan, F.M.; Gill, T.A.; Aluko, R.E. Antioxidant Properties of Salmon (Salmo Salar) Protein Hydrolysate and Peptide Fractions Isolated by Reverse-Phase HPLC. Food Res. Int. 2013, 52, 315–322. [Google Scholar] [CrossRef]
- Lan, X.; Liao, D.; Wu, S.; Wang, F.; Sun, J.; Tong, Z. Rapid Purification and Characterization of Angiotensin Converting Enzyme Inhibitory Peptides from Lizard Fish Protein Hydrolysates with Magnetic Affinity Separation. Food Chem. 2015, 182, 136–142. [Google Scholar] [CrossRef]
- Rana, S.; Singh, A.; Surasani, V.K.R.; Kapoor, S.; Desai, A.; Kumar, S. Fish Processing Waste: A Novel Source of Non-Conventional Functional Proteins. Int. J. Food Sci. Technol. 2023, 58, 2637–2644. [Google Scholar] [CrossRef]
- Kaspar, H.; Dettmer, K.; Gronwald, W.; Oefner, P.J. Advances in Amino Acid Analysis. Anal. Bioanal. Chem. 2009, 393, 445–452. [Google Scholar] [CrossRef]
- Otter, D.E. Standardised Methods for Amino Acid Analysis of Food. Br. J. Nutr. 2012, 108, S230–S237. [Google Scholar] [CrossRef]
- Roslan, J.; Yunos, K.F.M.; Abdullah, N.; Kamal, S.M.M. Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis niloticus) by-Product. Agric. Agric. Sci. Procedia 2014, 2, 312–319. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Zhao, Y.-Q.; Wang, Y.-M.; Yang, X.-R.; Chi, C.-F.; Wang, B. Gelatins and Antioxidant Peptides from Skipjack Tuna (Katsuwonus Pelamis) Skins: Purification, Characterization, and Cytoprotection on Ultraviolet-A Injured Human Skin Fibroblasts. Food Biosci. 2022, 50, 102138. [Google Scholar] [CrossRef]
- Peng, Z.; Gao, J.; Su, W.; Cao, W.; Zhu, G.; Qin, X.; Zhang, C.; Qi, Y. Purification and Identification of Peptides from Oyster (Crassostrea hongkongensis) Protein Enzymatic Hydrolysates and Their Anti-Skin Photoaging Effects on UVB-Irradiated HaCaT Cells. Mar. Drugs 2022, 20, 749. [Google Scholar] [CrossRef]
- Cai, B.; Wan, P.; Chen, H.; Huang, J.; Ye, Z.; Chen, D.; Pan, J. Purification and Identification of Novel Myeloperoxidase Inhibitory Antioxidant Peptides from Tuna (Thunnas albacares) Protein Hydrolysates. Molecules 2022, 27, 2681. [Google Scholar] [CrossRef]
- Yathisha, U.G.; Srinivasa, M.G.; Siddappa, B.C.R.; Mandal, S.P.; Dixit, S.R.; Pujar, G.V.; Bangera Sheshappa, M. Isolation and Characterization of ACE-I Inhibitory Peptides from Ribbonfish for a Potential Inhibitor of the Main Protease of SARS-CoV-2: An In Silico Analysis. Proteins Struct. Funct. Genet. 2022, 90, 982–992. [Google Scholar] [CrossRef]
- Ishak, N.H.; Shaik, M.I.; Yellapu, N.K.; Howell, N.K.; Sarbon, N.M. Purification, Characterization and Molecular Docking Study of Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide from Shortfin Scad (Decapterus macrosoma) Protein Hydrolysate. J. Food Sci. Technol. 2021, 58, 4567–4577. [Google Scholar] [CrossRef]
Byproducts | Species | Protease | Hydrolysis Conditions | Peptides/Amino Acid Fractions | References |
---|---|---|---|---|---|
Head | Squid (Loligo formosana) | Alcalase, Flavourzyme | 3% E/S, 12.5 h, unadjusted pH | Arg-Glu-Gly-Tyr-Phe-Lys | [57] |
Roe | Tuna (Katsuwonus pelamis) | Alcalase, trypsin | 1% E/S, 4 h, 55 °C | Cys-Gly-Arg | [58] |
Skin | Puffer fish (Takifugu flavidus) | Alcalase, neutral protease, pepsin | 2000 U/g %E/S, 5 h, pH 8, pH 7, pH 2 | Pro-Pro-Leu-Leu-Phe-Ala-Ala-Leu | [59] |
Mixed waste | Round scad (Decapterus maruadsi) | Neutrase | 0.3% E/S, 6 h, pH 7, 50 °C | KGFP, FPSV, FPFP, WPDGR | [60] |
Cartilage | Siberian sturgeon (Acipenser baerii) | Alcalase | - | GPTGED, GEPGEQ, GPEGPAG, VPPQD, GLEDHA, GDRGAEG, PRGFRGPV, GEYGFE, GFIGFNG | [61] |
Fish milt | Skipjack tuna (Katsuwonus pelamis) | Alcalase | 2% E/S, pH 9.5, 6 h, 55 °C | Tyr-Glu-Arg-Met, Tyr-Asp-Asp, Thr-Arg-Glu, Arg-Asp-tyr, Asp-Arg-Arg-Tyr-Gly, Ile-Cys-Tyr, Leu-Ser-Phe-Arg, Gly-Val-Arg-Phe | [62] |
Mixed waste | Anchovies Family Engraulidae | Alkaline protease NS37071, neutral protease | pH 8, 55 °C, 5 h | Thr-Pro-Ser-Ala-Gly-Lys, Thr-Pro-Ser-Asn-Leu-Gly-Gly-Lys, Leu-Glu, Leu-Glu-Glu | [63] |
Mixed waste | Deep-water Pink shrimps (Parapenaeus longirostris) | Savinase | 40 U/mg E/S, pH 10, 55 °C, 3 h | SSSKAKKMP, HGEGGRSTHE, WLGHGGRPDHE, WRMDIDGDIMISEQEAHQR | [64] |
Scales | Grass carp (Ctenopharyngodon idella) | Alkaline protease BaApr1 | 1250 U/g E/S, 7 h, pH 9.5, 50 °C | Tyr-Val-Gln-Ala-Gly-Ala-Ala-Gly-Ala-Ala-Ala-His, Val-Lys-Leu-Tyr-Val-Leu-Leu-Val-Pro | [65] |
Bones | Atlantic salmon | Trypsin | 0.4% E/S, 40 °C, pH 8.0, 3 h | FCLYELAR | [66] |
Viscera | Atlantic salmon (Salmo salar) | Pepsin | 1% E/S, pH 2, 37 °C, 8 h | Thr-Pro-Glu-Val-His-Ile-Ala-Val-Aso-Lys-Phe | [67] |
Skin | Nile tilapia (Oreochromis niloticus) | Properase E + multifect neutral | 5% E/S, pH 8, 55 °C, 4.5 h | Glu-Gly-Leu, Tyr-Gly-Asp-Glu-Tyr | [68] |
Hydrolysate Source | Sequence of Purification and Identification Methods | Bioactive Compound | References |
---|---|---|---|
Tuna skin (Katsuwonus pelamis) | UF–GF–RP-HPLC–AA sequence analysis–MW analysis | Collagen, antioxidative peptides | [120] |
Oyster meat (Crassostrea hongkongensis) | UF–GF–RP-HPLC–LC/MS/MS | Antioxidative peptides | [121] |
Lizard fish muscle | MA-IML separation, RP-HPLC–AA sequence analysis–MD | ACE-I peptide (VYP) | [112] |
Tuna muscle (Thunnus albacares) | UF–GF–HPLC-MS/MS–MD | Antioxidative peptides (ACGSDGK) | [122] |
Ribbonfish | UF–NF–RP-HPLC–AA sequence analysis–LC-MS/MS | ACE-I peptides | [123] |
Shortfin scad (Decapterus macrosoma) | UF–GF–RP-HPLC–MD | ACE-I peptides | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortizo, R.G.G.; Sharma, V.; Tsai, M.-L.; Wang, J.-X.; Sun, P.-P.; Nargotra, P.; Kuo, C.-H.; Chen, C.-W.; Dong, C.-D. Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions. Appl. Sci. 2023, 13, 5768. https://doi.org/10.3390/app13095768
Ortizo RGG, Sharma V, Tsai M-L, Wang J-X, Sun P-P, Nargotra P, Kuo C-H, Chen C-W, Dong C-D. Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions. Applied Sciences. 2023; 13(9):5768. https://doi.org/10.3390/app13095768
Chicago/Turabian StyleOrtizo, Rhessa Grace Guanga, Vishal Sharma, Mei-Ling Tsai, Jia-Xiang Wang, Pei-Pei Sun, Parushi Nargotra, Chia-Hung Kuo, Chiu-Wen Chen, and Cheng-Di Dong. 2023. "Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions" Applied Sciences 13, no. 9: 5768. https://doi.org/10.3390/app13095768
APA StyleOrtizo, R. G. G., Sharma, V., Tsai, M. -L., Wang, J. -X., Sun, P. -P., Nargotra, P., Kuo, C. -H., Chen, C. -W., & Dong, C. -D. (2023). Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions. Applied Sciences, 13(9), 5768. https://doi.org/10.3390/app13095768