Wear Model of Silicon Nitride Ceramic Balls in Three-Body Coupling Grinding Mode
Abstract
:1. Introduction
2. Comprehensive Performance Analysis of Precision Ball Grinding Methods at Home and Abroad
2.1. Traditional V-Groove Grinding Method
2.2. Rotation Angle Actively Controlled Grinding Mode
2.3. Three-Body Coupling Grinding Mode
3. Analysis of the Wear Performance of Precision Spheres
3.1. Material Removal Mechanism of Precision Spheres
3.2. Status of Research on the Wear Model of Silicon Nitride Ceramic Balls
4. Wear Mode of Silicon Nitride Ceramic Balls during Grinding
4.1. Wear Classification
4.2. Conversion between Two-Body Wear and Three-Body Wear
4.3. Wear Mode of Silicon Nitride Ceramic Balls
4.4. Three-Body Wear Model of Silicon Nitride Ceramic Ball Grinding
5. Discussion
5.1. Influence of Wear
5.2. Influence of the Material Properties of the Ball Blank and Pad
5.3. Influence of Process Parameters
5.4. Deficiencies of the Model
5.5. Experimental Study on the Removal Form of Silicon Nitride Ceramic Spheres
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dezzani, M.M.; Pearson, P.K. Hybrid ceramic bearings for difficult applications. J. Eng. Gas Trbine Surbines Power-Trans. ASME 1996, 118, 449–452. [Google Scholar] [CrossRef]
- Huang, C.; Yang, W.; Ai, X. The present situation and future prospect of study on advanced ceramic bearing. China Ceram. Ind. 1999, 6, 25–27. [Google Scholar]
- Zhang, K. Analysis of NSK new rolling bearings in Japan. Bearing 2000, 9, 36–39. [Google Scholar]
- Maeda, Y. Development of high precision silicon nitride balls. Koyo Eng. J. 2001, 158, 42–44. [Google Scholar]
- Wang, G.Q.; Wang, Y.J. Research progress of ceramic ball bearings for spindle of high-speed CNC machine tools. Bearing 2003, 9, 41–59. [Google Scholar]
- Furuma, K. Recent trends in research and development of rolling bearing at NSK. Motion Control 1996, 1, 5–12. [Google Scholar]
- Rascher, R. Technical status and development trend of grinding steel ball. Foreign Bear. 1992, 3, 38–42. [Google Scholar]
- Huang, B.W.; Kung, H.K. Variations of instability in a rotating spindle system with various bearings. Int. J. Mech. Sci. 2003, 45, 57–72. [Google Scholar] [CrossRef]
- Xiao, X.L.; Yan, Q.S.; Lin, H.T.; Jiao, J.H.; Liu, J. Research progress of silicon nitride ceramic ball grinding and polishing technology. J. Guangdong Univ. Technol. 2018, 35, 18–23, 30. [Google Scholar]
- Guo, W.G.; Yuan, J.L.; Xiang, Z.; Zhou, F.F.; Lv, B.M.; Zhao, P. Spheroidal Machining Test Based on Variable Turning Curvature Grinding Method with Single Turntable. Surf. Technol. 2018, 7, 252–258. [Google Scholar]
- Guo, W.G.; Yuan, J.L.; Xiang, Z.; Lv, B.M.; Zhao, P.; Zhou, F.F. Experiment on process parameters for material removal of high-precision balls by spiral groove lapping plate. J. Mech. Electr. Eng. 2018, 10, 1058–1062. [Google Scholar]
- Nie, L.F.; Zhao, X.J. Discussion on the rounding conditions of steel balls and its influencing factors. Bearing 2001, 1, 16–18. [Google Scholar]
- Zhang, K.; Wang, H.; Sun, J. Simulation and experimental study on superfinishing silicon nitride full-ceramic ball bearing raceway. Ordnance Mater. Sci. Eng. 2019, 4, 49–54. [Google Scholar]
- Chen, B.; Wei, Z.H.; Li, B.; Wang, Z.C.; Wang, T.F. Research and application progress of silicon nitride ceramics in four fields. Bull. Chin. Ceram. Soc. 2022, 4, 1404–1415. [Google Scholar]
- Su, B.W.; Sun, B.Q.; Wang, Y.L.; Li, L.X.; Wan, L. Study on wear characteristics of water-borne silicon nitride all-ceramic rolling bearings. Bearing 2020, 3, 22–25. [Google Scholar]
- Su, B.W.; Xin, S.H.; Ma, Y.; Ding, P.; Zeng, Y.P. Dynamic corrosion and wear behavior of silicon nitride all-ceramic rolling bearing in acidic aqueous solution. Bearing 2020, 4, 38–42. [Google Scholar]
- Sun, H.X.; Cao, L.Y.; Wang, Z.H. Friction and wear properties of silicon nitride ceramic tool materials sintered by spark plasma. Bull. Chin. Ceram. Soc. 2019, 12, 3736–3742. [Google Scholar]
- Wei, C.M.; Li, Y.B.; Jiang, C.Y.; Zhang, J.T.; Ding, P. Corrosion and wear characteristics of silicon nitride ceramics in acidic medium solution. Bearing 2019, 8, 22–25. [Google Scholar]
- Zhong, J.; Li, C.S.; Li, J.F.; Hua, G.M. Preparation and characterization of silicon nitride ceramic composites reinforced by silicn carbide. Bearing 2019, 1, 36–40. [Google Scholar]
- Lv, B.H. Research on Ceramic Balling and Sphere-Shaping Mechanism with Rotated Dual-Plates Machine. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2007. [Google Scholar]
- Xu, Q. Research on the Technology of High Efficiency Lapping Method of Hard Material Sphere. Master’s Thesis, Zhejiang University of Technology, Hangzhou, China, 2008. [Google Scholar]
- Yang, F. The Research of Kinematic Characteristics of Balls and Their Influence Factors on the Rotated Dual-Plates Lapping Platform. Master’s Thesis, Zhejiang University of Technology, Hangzhou, China, 2010. [Google Scholar]
- Tao, B.C. Speed Optimization and Process Experiment Research on the Dual Rotating Plates Lapping Mode of the Ceramic Balls. Master’s Thesis, Zhejiang University of Technology, Hangzhou, China, June 2006. [Google Scholar]
- Tang, K.F. Study on the Mechanism of Grinding Achievement under Double Rotation Grinding Mode. Master’s Thesis, Zhejiang University of Technology, Hangzhou, China, 2010. [Google Scholar]
- Chen, J.J. Research on the Impact of the Spherulization Mechanism in the Process of Rotated Dual-Plates Lapping on Sphericity. Master’s Thesis, Zhejiang University of Technology, Hangzhou, China, 2010. [Google Scholar]
- Zhang, B.; Nakajima, A. Grinding of Si3N4 ceramic balls with the aid of photo-catalyst of TiO2. Ann. CIRP 2002, 51, 259–262. [Google Scholar] [CrossRef]
- Ido, M.; Hazi, T.; Nakazima, M. On the miniature ball bearings—On the effect of revolutional radius in lapping steel balls. Jpn. Soc. Precis. Eng. 1960, 26, 470–475. (In Japanese) [Google Scholar] [CrossRef]
- Ido, M.; Hazi, T.; Nakazima, M. On the miniature ball bearings—On the effect of lapping liquid in lapping steel balls (Part 2). Jpn. Soc. Precis. Eng. 1961, 27, 261–267. (In Japanese) [Google Scholar] [CrossRef]
- Ido, M.; Hazi, T.; Nakazima, M. On the miniature ball bearings—On the lapping pressure in lapping steel balls (Part 1). Jpn. Soc. Precis. Eng. 1958, 24, 161–168. (In Japanese) [Google Scholar] [CrossRef]
- Ren, C.Z. The eccentric circular groove lapping technique for ceramic balls. Chin. J. Mech. Eng. 1995, 11, 21–24. [Google Scholar]
- Yuan, J.L.; Wang, Z.W.; Lv, B.H. Simulation Study on the Developed Eccentric V-grooves Lapping Mode for Precise Ball. Key Eng. Mater. 2006, 304, 300–304. [Google Scholar] [CrossRef]
- Wang, Z.W. Fundamental Research on the Lapping Technology of Precise Balls. Master’s Thesis, Zhejiang University of Technology, Hangzhou, China, 2005; pp. 27–35. [Google Scholar]
- Kurobe, T.; Kakuta, H.; Onoda, M. Spin angle control lapping of balls (1st report)—Theoretical analysis of lapping mechanism. J. Jpn. Soc. Precis. Eng. 1996, 62, 1773–1777. [Google Scholar] [CrossRef]
- Kurobe, T.; Kakuta, H.; Onoda, M. Spin angle control lapping of balls (2nd report)—Theoretical analysis of lapping mechanism. J. Jpn. Soc. Precis. Eng. 1997, 63, 726–730. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, H.W. A new method for grinding ceramic balls. Diam. Abras. Eng. 1996, 4, 15–18. [Google Scholar]
- Wu, Y.H.; Zhang, K.; Sun, H. Rubbing process technology of HIPSN ceramic balls. Key Eng. Mater. 2001, 202, 185–188. [Google Scholar] [CrossRef]
- Li, S.H.; Wu, Y.H. Mechanical analysis of new-style grinding method of ceramic balls. J. Shenyang Archit. Civ. Eng. Univ. 2003, 18, 229–232. [Google Scholar]
- Lu, F.; Wu, Y.H.; Zhang, K. Technological investigation on taper grinding for hybrid bearing ceramic ball. J. Northeast Univ. 2004, 25, 82–85. [Google Scholar]
- Tani, Y.; Kawata, K. Development of high-efficient fine finishing process using magnetic fluid. Ann. CIRP 1984, 33, 217–220. [Google Scholar] [CrossRef]
- Umehara, N.; Kato, K. Principles of magnetic fluid grinding of ceramic balls. Appl. Electromagn. Mater. 1990, 1, 37–43. [Google Scholar]
- Raghumandan, M.; Noori-Khajavi, A.; Umehara, N.; Komanduri, R. Magnetic float polishing of advanced ceramics. Trans. ASME J. Manuf. Sci. Eng. 1996, 119, 521–528. [Google Scholar]
- Chen, M.C. Theoretical Analysis of Ball Dynamic Characteristics of Ball Grinding Machine. Master’s Thesis, National Sun Yat-sen University, Taiwan, China, 2000; pp. 5–10. [Google Scholar]
- Childs, T.H.C.; Yoon, H.J. Magnetic fluid grinding cell design. Ann. CIRP 1992, 41, 343–346. [Google Scholar] [CrossRef]
- Childs, T.H.C.; Jones, D.A.; Mahmood, S.; Zhang, B.; Kato, K.; Umehara, N. Magnetic fluid grinding mechanics. Wear 1994, 175, 189–198. [Google Scholar] [CrossRef]
- Childs, T.H.C.; Mahmood, S.; Yoon, H.J. Magnetic fluid grinding of ceramic balls. Tribol. Int. 1995, 28, 341–348. [Google Scholar] [CrossRef]
- Raghunandan, M.; Komanduri, R. Finishing of silicon nitride balls for high-speed bearing applications. Trans. ASME J. Manf. Sci. Eng. 1998, 120, 376–386. [Google Scholar] [CrossRef]
- Umehara, N.; Komanduri, R. Magnetic fluid grinding of HIP-Si3N4 rollers. Wear 1996, 192, 85–93. [Google Scholar] [CrossRef]
- Jiang, M.; Komandruri, R. On the finishing of Si3N4 balls for bearing applications. Wear 1998, 215, 267–278. [Google Scholar] [CrossRef]
- Chang, F.Y.; Childs, T.H.C. Non-magnetic fluid grinding. Wear 1998, 223, 7–12. [Google Scholar] [CrossRef]
- Child, T.H.C.; Moss, D.J. Grinding Ratio and Cost Issues in Magnetic and Non-Magnetic Fluid Grinding. Ann. CIRP 2000, 49, 261–264. [Google Scholar] [CrossRef]
- Childs, T.H.C.; Moss, D.J. Wear and cost issues in magnetic fluid grinding. Wear 2001, 249, 509–516. [Google Scholar] [CrossRef]
- Vora, H.; Orent, T.W.; Stokes, R.J. Mechano-Chemical polishing of Silicon Nitrided. J. Am. Ceram. Soc. 1983, 65, C140–C141. [Google Scholar] [CrossRef]
- Uematsu, T.; Suzuki, K.; Wu, M.H.; Suzki, K.; Imanaka, O. Efficient Mechanochemical Polishing for Silicon Nitride Ceramics, Machining of Advanced Materials. NIST Spec. Publ. 1993, 847, 409–413. [Google Scholar]
- Suga, T.; Suzuki, S.; Miyazawa, K. Mechanochemical Polishing of Sintered Silicon Nitride. JSPE 1989, 55, 2247–2253. (In Japanese) [Google Scholar]
- Kikuchi, M.; Takahaski, Y.; Suzuki, S.; Bando, Y. Mechano-Chemical Polishing of Silicon Carbide Single Crystal with Chromium Oxide Abrasive. J. Am. Ceram. Soc. 1992, 75, 189–195. [Google Scholar] [CrossRef]
- Nelson, M.J.; Wood, O.; Komanduri, R. On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) work material with various abrasives. Wear 1998, 220, 59–71. [Google Scholar]
- Bhagavatula, S.R.; Komanduri, R. On the Chemo-Mechanical Polishing of Silicon Nitride with Chromium Oxide Abrasive. Philos. Mag. 1996, 74, 1003–1017. [Google Scholar] [CrossRef]
- Wei, W.X.; Su, Y.F.; Fan, H.Z.; Liang, H.Q.; Song, J.J.; Zhang, Y.S.; Hu, L.T. Fretting Friction and Wear Characteristics and Damage Behaviors of Si3N4 Ceramic Balls Sliding against Bearing Steel. Tribology 2022, 1, 113–122. [Google Scholar]
- Zhang, K.; Wang, D.; Li, S.; Sun, J.; Wu, Y.; Childs, T.H.C.; Mahmood, S.; Yoon, H.J. Material removal mode of lapping Si3N4 balls. Diam. Abras. Eng. 2019, 39, 38–44. [Google Scholar]
- Trezona, R.I.; Allsopp, D.N.; Hutchings, I.M. Transitions between two-body and three-body abrasive wear: Influence of test conditions in the microscale abrasive wear test. Wear 1999, 225, 205–214. [Google Scholar] [CrossRef]
- Adachi, K.; Hutchings, I.M. Wear-mode mapping for the micro-scale abrasion test. Wear 2003, 255, 23–29. [Google Scholar] [CrossRef]
- Ren, C.Z.; Wang, T.Y.; Jin, X.M.; Xu, H. Experimental research on the residual stress in the surface of silicon nitride ceramic balls. J. Mater. Process Technol. 2002, 129, 446–450. [Google Scholar] [CrossRef]
- Buijs, M.; van Houten, K. Three-body abrasion of brittle materials as studied by lapping. Wear 1993, 166, 237–245. [Google Scholar] [CrossRef]
- Chauhan, R.; Ahn, Y.; Chandrasekar, S.; Farris, T.N. Role of indentation fracture in free abrasive machining of ceramics. Wear 1993, 162, 246–257. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.M.; Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Physical analysis and statistical investigation of tensile and fatigue behaviors of glass fiber-reinforced polyester via novel fibers arrangement. J. Compos. Mater. 2023, 57, 147–166. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Steel, K.; Veidt, M.; Heitzmann, M.T. Mechanical and Tribological Performances of Thermoplastic Polymers Reinforced with Glass Fibres at Variable Fibre Volume Fractions. Polymers 2023, 15, 694. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Steel, K.; Veidt, M.; Heitzmann, M.T. Wear behaviour of polymeric materials reinforced with man-made fibres: A comprehensive review about fibre volume fraction influence on wear performance. J. Reinf. Plast. Compos. 2022, 41, 215–241. [Google Scholar] [CrossRef]
Grinding Mode | Grinding Efficiency | Grinding Accuracy | Mechanical Structure |
---|---|---|---|
Traditional V-groove grinding mode | Low | Low | Simple |
Double V-groove grinding mode | High | High | Complicated |
Magnetic fluid grinding mode | Very high | Low | Complicated |
Rotation angle actually controlled grinding mode | High | High | Complicated |
Three-body coupling grinding mode | High | High | Relatively simple |
Parameter | Si3N4 Ball Blank | Cast Iron Disk |
---|---|---|
Density (kg/m3) | 3200 | 7400–7700 |
Hardness (HV) | 1500 | 230–250 |
Young’s modulus (Gpa) | 310 | 113–157 |
Poisson’s ratio | 0.26 | 0.23–0.27 |
Compressive strength (Mpa) | >3500 | |
Bending strength (Mpa) | 600 | >175 |
Surface roughness (Ra) | 20 nm |
Abrasive grain | B4C: W20, W7, W3.5 |
Lapping liquid base | Deionized water |
Abrasive concentration | 10–30 wt% |
Load | 0.5–2 N |
Disc speed | 20 rpm |
Total speed of disc | 500 rpm |
Concentration (wt%) | 5 | 10 | 15 | 20 | 25 | 30 | |
---|---|---|---|---|---|---|---|
Load (N) | |||||||
2 | 95.6 | 47.55 | 31.53 | 23.53 | 18.72 * | 15.52 * | |
1.5 | 71.68 | 35.59 | 23.56 | 17.55 * | 13.94 * | 11.53 * | |
1 | 47.7 | 23.60 | 15.57 * | 11.55 * | 9.14 * | 7.50 * | |
0.5 | 23.65 | 11.57 * | 7.55 * | 5.54 * | 4.32 * | 3.53 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Lv, B.; Yuan, J. Wear Model of Silicon Nitride Ceramic Balls in Three-Body Coupling Grinding Mode. Appl. Sci. 2023, 13, 5796. https://doi.org/10.3390/app13095796
Yu W, Lv B, Yuan J. Wear Model of Silicon Nitride Ceramic Balls in Three-Body Coupling Grinding Mode. Applied Sciences. 2023; 13(9):5796. https://doi.org/10.3390/app13095796
Chicago/Turabian StyleYu, Wei, Binghai Lv, and Julong Yuan. 2023. "Wear Model of Silicon Nitride Ceramic Balls in Three-Body Coupling Grinding Mode" Applied Sciences 13, no. 9: 5796. https://doi.org/10.3390/app13095796
APA StyleYu, W., Lv, B., & Yuan, J. (2023). Wear Model of Silicon Nitride Ceramic Balls in Three-Body Coupling Grinding Mode. Applied Sciences, 13(9), 5796. https://doi.org/10.3390/app13095796