Estimation of the Genome Size and Complete Chloroplast Genome in Adenophora remotiflora: Genome Structures, Comparative Genomics, and Phylogenetic Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Sequencing, and Genome Size Estimation
2.2. Chloroplast Genome Assembly, Gene Annotation, and Characteristic Visualization
2.3. Repeat Sequences of A. remotiflora
2.4. Chloroplast Sequence Comparison among the Adenophora Species
2.5. Phylogenetic Diversity among the Campanulaceae Family
3. Results and Discussion
3.1. Genome Size Estimation of A. remotiflora
3.2. Chloroplast Genome Assembly of A. remotiflora
3.3. Identification of Repeat Sequences in A. remotiflora
3.4. Comparison of Chloroplast Genome Sequences
3.5. Comparison of Inverted Repeats Region
3.6. Phylogenetic Diversity in the Campanulaceae Family
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, A.; Im, M.; Ma, J.Y. Ethanol extract of Remotiflori radix induces endoplasmic reticulum stress-mediated cell death through AMPK/mTOR signaling in human prostate cancer cells. Sci. Rep. 2015, 5, 8394. [Google Scholar] [CrossRef] [PubMed]
- Haberle, R.C.; Dang, A.; Lee, T.; Peñaflor, C.; Cortes-Burns, H.; Oestreich, A.; Raubeson, L.; Cellinese, N.; Edwards, E.J.; Kim, S.-T.; et al. Taxonomic and biogeographic implications of a phylogenetic analysis of the Campanulaceae based on three chloroplast genes. Taxon 2009, 58, 715–734. [Google Scholar] [CrossRef]
- Liveri, E.; Crowl, A.A.; Cellinese, N. Past, present, and future of Campanula (Campanulaceae) systematics—A review. Bot. Chron. 2019, 22, 209–222. [Google Scholar]
- Zhai, W.; Duan, X.; Zhang, R.; Guo, C.; Li, L.; Xu, G.; Shan, H.; Kong, H.; Ren, Y. Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Mol. Phylogenet. Evol. 2019, 135, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. Int. J. Mol. Sci. 2013, 14, 3540–3555. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Hu, Q.; Al-Shehbaz, I.A.; Luo, X.; Zeng, T.; Guo, X.; Liu, J. Species delimitation and interspecific relationships of the genus Orychophragmus (Brassicaceae) inferred from whole chloroplast genomes. Front. Plant Sci. 2016, 7, 1826–2884. [Google Scholar] [CrossRef] [PubMed]
- Henriquez, C.L.; Abdullah, A.; Ahmed, I.; Carlsen, M.M.; Zuluaga, A.; Croat, T.B.; Mckain, M.R. Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). Planta 2020, 251, 72. [Google Scholar] [CrossRef]
- Smith, D.R. Mutation rates in plastid genomes: They are lower than you might think. Genome Biol. Evol. 2015, 7, 1227–1234. [Google Scholar] [CrossRef]
- Cheon, K.S.; Kim, K.A.; Yoo, K.O. The complete chloroplast genome sequences of three Adenophora species and comparative analysis with campanuloid species (Campanulaceae). PLoS ONE 2017, 12, e0183652. [Google Scholar] [CrossRef]
- Wicke, S.; Schneeweiss, G.M.; Depamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef]
- Marçais, G.; Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011, 27, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Ranallo-Benavidez, T.R.; Jaron, K.S.; Schatz, M.C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 2020, 11, 1432. [Google Scholar] [CrossRef] [PubMed]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, K.; Parkhill, J.; Crook, J.; Horsnell, T.; Rice, P.; Rajandream, M.A.; Barrell, B. Artemis: Sequence visualization and annotation. Bioinformatics 2000, 16, 944–945. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ni, Y.; Li, J.; Zhang, X.; Yang, H.; Chen, H.; Liu, C. CPGView: A package for visualizing detailed chloroplast genome structures. Mol. Ecol. Resour. 2023, 23, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Kurtz, S. The Vmatch large scale sequence analysis software. Cent. Bioinform. 2011, 170, 391–392. [Google Scholar]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; Depamphilis, C.W.; Chumley, T.W.; Haberle, R.C.; Wyman, S.K.; Alverson, A.J.; Peery, R.; Herman, S.J.; et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 2005, 395, 348–384. [Google Scholar] [PubMed]
- Weng, M.L.; Blazier, J.C.; Govindu, M.; Jansen, R.K. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol. 2014, 31, 645–659. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Lee Abdullah, T.; Yusop, M.R.; Hanafi, M.M.; Sahebi, M.; Azizi, P.; Shamshiri, R.R. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules 2018, 23, 399. [Google Scholar] [CrossRef] [PubMed]
- Ledenyova, M.L.; Tkachenko, G.A.; Shpak, I.M. Imperfect and compound microsatellites in the genomes of Burkholderia pseudomallei strains. Mol. Biol. 2019, 53, 142–153. [Google Scholar] [CrossRef]
- Nie, X.; Lv, S.; Zhang, Y.; Du, X.; Wang, L.; Biradar, S.S.; Tan, X.; Wan, F.; Weining, S. Complete chloroplast genome sequence of a major invasive species, Crofton weed (Ageratina adenophora). PLoS ONE 2012, 7, e36869. [Google Scholar] [CrossRef]
- Provan, J.; Powell, W.; Hollingsworth, P.M. Chloroplast microsatellites: New tools for studies in plant ecology and evolution. Trends Ecol. Evol. 2001, 16, 142–147. [Google Scholar] [CrossRef]
- Wang, L.; He, N.; Li, Y.; Fang, Y.; Zhang, F. Complete chloroplast genome sequence of Chinese lacquer tree (Toxicodendron vernicifluum, Anacardiaceae) and its phylogenetic significance. BioMed Res. Int. 2020, 1, 9014873. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, X.X.; Jeong, B.R. Supplementary Light source affects growth, metabolism, and physiology of Adenophora triphylla (thunb.) A. BioMed Res. Int. 2019, 2019, 6283989. [Google Scholar]
- Kim, K.A.; Cheon, K.S. Complete chloroplast genome sequence of Adenophora racemosa (Campanulaceae): Comparative analysis with congeneric species. PLoS ONE 2021, 16, e0248788. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Yang, H.; Lan, J.; Zhang, X.; Zhang, F.; Yang, J.; Chen, S. Comparative analysis of chloroplast genomes reveals phylogenetic relationships and intraspecific variation in the medicinal plant Isodon rubescens. PLoS ONE 2022, 17, e0266546. [Google Scholar] [CrossRef]
- Kim, K.A.; Park, Y.J.; Cheon, K.S. The complete chloroplast genome sequence of Adenophora kayasanensis Kitam (Campanulaceae), an endemic to Korea. Mitochondrial DNA Part B 2021, 6, 3475–3476. [Google Scholar] [CrossRef]
Category | Group | Name of Genes |
---|---|---|
Photosynthesis | Photosystem I | psaA, psaB, psaC, psaI, psaJ |
Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbK, psbL, psbM, psbN, psbT, psbZ, ycf3, psbJ * | |
Cytochrome 1 | petA, petB, petD, petL, petN, petG * | |
ATP synthase | atpA, atpB, atpE, atpF, atpH, atpI | |
NADH 2 | ndhC, ndhD, ndhE, ndhF, ndhJ, ndhK, ndhA *, ndhG *, ndhH *, ndhI * | |
Rubisco 3 | rbcL | |
Self-replication | SSU ribosome 4 | rps2, rps3, rps4, rps7, rps8, rps11, rps14, rps16, rps18, rps19, rps12 *, rps15 * |
LSU ribosome 5 | rpl2, rpl14, rpl16, rpl20, rpl22, rpl32, rpl33, rpl36 | |
Polymerase 6 | rpoA, rpoB, rpoC1, rpoC2 | |
rRNA genes | rrn16 *, rrn23 *, rrn4.5 *, rrn5 * | |
tRNA genes | trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC, trnH-GUG, trnK-UUU, trnL-UAA, trnL-UAG, trnM-CAU, trnQ-UUG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-UAC, trnY-GUA, trnA-UGC *, trnR-AGC *, trnI-GAU *, trnL-CAA *, trnN-GUU *, trnP-UGG *, trnV-GAC *, trnW-CCA *, trnI-CAU ** | |
Other genes | Cytochrome 7 | ccsA, |
Envelope 8 | cemA, | |
Maturase | matK | |
ORFs 9 | ycf2, ycf4, ycf1 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, W.-S.; Kim, C.-K.; Kim, Y.-K. Estimation of the Genome Size and Complete Chloroplast Genome in Adenophora remotiflora: Genome Structures, Comparative Genomics, and Phylogenetic Diversity. Appl. Sci. 2024, 14, 275. https://doi.org/10.3390/app14010275
Yoon W-S, Kim C-K, Kim Y-K. Estimation of the Genome Size and Complete Chloroplast Genome in Adenophora remotiflora: Genome Structures, Comparative Genomics, and Phylogenetic Diversity. Applied Sciences. 2024; 14(1):275. https://doi.org/10.3390/app14010275
Chicago/Turabian StyleYoon, Won-Sub, Chang-Kug Kim, and Yong-Kab Kim. 2024. "Estimation of the Genome Size and Complete Chloroplast Genome in Adenophora remotiflora: Genome Structures, Comparative Genomics, and Phylogenetic Diversity" Applied Sciences 14, no. 1: 275. https://doi.org/10.3390/app14010275
APA StyleYoon, W. -S., Kim, C. -K., & Kim, Y. -K. (2024). Estimation of the Genome Size and Complete Chloroplast Genome in Adenophora remotiflora: Genome Structures, Comparative Genomics, and Phylogenetic Diversity. Applied Sciences, 14(1), 275. https://doi.org/10.3390/app14010275