The Effectiveness of Swiveling Seats in Protecting Reclined Occupants in Highly Autonomous Driving Environments during Frontal Crashes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Models
2.2. Simulation Matrix for Different Constrained Systems
2.2.1. Seat
2.2.2. Constraint System
2.3. Occupant Dynamics Analysis
3. Results
3.1. Head
3.2. Thorax and Abdomen
3.3. Spine
3.4. Pelvis and Lower Limbs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, X.; Cao, S.; Tang, P. Shaping driver-vehicle interaction in autonomous vehicles—How the new in-vehicle systems match the human needs. Appl. Ergon. 2021, 21, S66–S71. [Google Scholar] [CrossRef]
- Nie, B.; Gan, S.; Chen, W.; Zhou, Q. Seating preferences in highly automated vehicles and occupant safety awareness: A national survey of Chinese perceptions. Traffic Inj. Prev. 2020, 21, 247–253. [Google Scholar] [CrossRef]
- Timothy, L.M.; Gerald, S.P.; Greg, S.; Matthew, B.P. Crash safety concerns for out-of-position occupant postures: A look toward safety in highly automated vehicles. Traffic Inj. Prev. 2018, 19, 582–587. [Google Scholar]
- Östling, M.; Annika, L. Occupant activities and sitting positions in automated vehicles in China and Sweden. In Proceedings of the Enhanced Safety Vehicles (ESV), Eindhoven, The Netherlands, 22 June 2019. [Google Scholar]
- Jorlöv, S.; Bohman, K.; Annika, L. Seating positions and activities in highly automated cars—A qualitative study of future automated driving scenarios. In Proceedings of the IRCOBI Conference, Antwerp, Belgium, 13–15 September 2017. [Google Scholar]
- Rehm, C.G.; Goldman, R.K. Seat belt and car seat in a reclined position-a dangerous combination. J. Trauma 2021, 51, 1189–1191. [Google Scholar] [CrossRef]
- Schaefer, L.C.; Junge, M.; Voros, I.; Koçaslan, K.; Becker, U. Odds ratios for reclined seating positions in real-world crashes. Accid. Anal. Prev. 2021, 161, 106357. [Google Scholar] [CrossRef]
- Talimian, A.; Vychytil, J. Numerical study of frontal collision effects on an occupant’s safety, in autonomous vehicles, with non-standard seating configurations. Acta. Polytech. Hung. 2021, 18, 127–140. [Google Scholar] [CrossRef]
- Leledakis, A.; Osth, J.; Davidsson, J.; Jakobsson, L. The influence of car passengers’ sitting postures in intersection crashes. Accid. Anal. Prev. 2021, 157, 106170. [Google Scholar] [CrossRef]
- Mroz, K.; Östling, M.; Richardson, R.; Kerrigan, J.; Forman, J.; Gepner, B.; Nils, L.B.P. Effect of seat and seat belt characteristics on the lumbar spine and pelvis loading of the SAFER human body model in reclined postures. In Proceedings of the IRCOBI Conference, Munich, Germany, 1 September 2020. [Google Scholar]
- Wu, H.; Hou, H.; Shen, M.; Yang, K.H.; Jin, X. Occupant kinematics and biomechanics during frontal collision in autonomous vehicles-can rotable seat provides additional protection. Comput. Methods Biomec. 2019, 23, 191–200. [Google Scholar] [CrossRef]
- Gepner, B.D.; Draper, D.; Mroz, K.; Richardson, R.; Ostling, M.; Pipkorn, B.; Forman, J.L.; Kerrigan, J.R. Comparison of human body models in frontal crashes with reclined seatback. In Proceedings of the IRCOBI Conference, Florence, Italy, 11–13 September 2019. [Google Scholar]
- Grebonval, C.; Trosseille, X.; Petit, P.; Wang, X.; Beillas, P. Effects of seat pan and pelvis angles on the occupant response in a reclined position during a frontal crash. PLoS ONE 2021, 16, e0257292. [Google Scholar] [CrossRef]
- Rawska, K.; Gepner, B.; Moreau, D.; Kerrigan, J.R. Submarining sensitivity across varied seat configurations in autonomous driving system environment. Traffic Inj. Prev. 2022, 21, S1–S6. [Google Scholar] [CrossRef]
- Richardson, R.; Donlon, J.P.; Chastain, K.; Shaw, G.; Forman, J. Test methodology for evaluating the reclined seating environment with human surrogates. In Proceedings of the Enhanced Safety Vehicles (ESV), Eindhoven, The Netherlands, 22 June 2019. [Google Scholar]
- Richardson, R.; Jayathirtha, M.; Chastain, K.; Donlon, J.P.; Forman, J.; Gepner, B.; Östling, M.; Mroz, K.; Shaw, G.; Pipkorn, B.; et al. Thoracolumbar spine kinematics and injuries in frontal impacts with reclined occupants. Traffic Inj. Prev. 2020, 21, S66–S71. [Google Scholar] [CrossRef]
- Matsushita, T.; Saito, H.; Sunnevång, C.; Östling, M.; Vishwanatha, A.; Tabhane, A. Evaluation of the protective performance of a novel restraint system for highly automated vehicles. In Proceedings of the Enhanced Safety Vehicles (ESV), Eindhoven, The Netherlands, 22 June 2019. [Google Scholar]
- Rawska, K.; Gepner, B.; Kulkarni, S.; Chastain, K.; Zhu, J.; Richardson, R.; Perez, R.D.; Forman, J.; Kerrigan, J.R. Submarining sensitivity across varied anthropometry in an autonomous driving system environment. Traffic Inj. Prev. 2019, 20, S123–S127. [Google Scholar] [CrossRef]
- Kang, M.; Kim, H.; Cho, Y.; Kim, S.; Lim, D. Occupant safety effectiveness of proactive safety seat in autonomous emergency braking. Sci. Rep. 2022, 12, 5727. [Google Scholar] [CrossRef]
- Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 2007, 51, 81–114. [Google Scholar]
- Takhounts, E.G.; Eppinger, R.H.; Campbell, J.Q.; Tannous, R.E.; Power, E.D.; Shook, L.S. On the development of the SIMon finite element head model. Stapp Car Crash J. 2003, 47, 107–133. [Google Scholar]
- Hertz, E. A note on the head injury criterion (HIC) as a predictor of the risk of skull fracture. Publ. Assoc. Adv. Automot. Med. 1993, 37, 303–312. [Google Scholar]
- Maiman, D.J.; Sances, A.J.; Myklebust, J.B.; Larson, S.J.; Houterman, C.; Chilbert, M.; El-Ghatit, A.Z. Compression injuries of the cervical spine: A biomechanical analysis. Neurosurgery 1983, 13, 254–260. [Google Scholar] [CrossRef]
- Burstein, A.H.; Reilly, D.T.; Martens, M. Aging of bone tissue: Mechanical properties. J. Bone Jt. 1976, 58, 82–86. [Google Scholar] [CrossRef]
- McCalden, R.W.; McGeough, J.A.; Barker, M.B.; Court-Brown, C.M. Age-related changes in the tensile properties of cortical bone. J. Bone Jt. 1993, 75, 1193–1205. [Google Scholar] [CrossRef]
- Ji, P.; Huang, Y.; Zhou, Q. Mechanisms of using knee bolster to control kinematical motion of occupant in reclined posture for lowering injury risk. Int. J. Crashworthiness 2017, 22, 415–424. [Google Scholar] [CrossRef]
- Dissanaike, S.; Kaufman, R.; Mack, C.D.; Mock, C.; Bulger, E. The effect of reclined seats on mortality in motor vehicle collisions. J. Trauma 2008, 64, 614–619. [Google Scholar] [CrossRef]
- Boyle, K.J.; Reed, M.P.; Zaseck, L.W.; Hu, J. A human modelling study on occupant kinematics in highly reclined seats during frontal crashes. In Proceedings of the IRCOBI Conference, Florence, Italy, 11–13 September 2019. [Google Scholar]
- Richardson, R.; Donlon, J.P.; Jayathirtha, M.; Forman, J.L.; Shaw, G.; Gepner, B.; Kerrigan, J.R. Kinematic and injury response of reclined PMHS in frontal impact. Stapp Car Crash J. 2020, 64, 83–153. [Google Scholar]
- Östh, J.; Bohman, K.; Jakobsson, L. Evaluation of kinematics and restraint interaction when repositioning a driver from a reclined to an upright position prior to frontal impact using active human body model simulations. In Proceedings of the IRCOBI Conference, Munich, Germany, 1 September 2020. [Google Scholar]
- Reed, M.P.; Ebert, S.M.; Jones, M.L.H. Posture and belt fit in reclined passenger seats. Traffic Inj. Prev. 2019, 20, S38–S42. [Google Scholar] [CrossRef]
- Thorbole, C.K. Dangers of seatback reclined in a moving vehicle how seatback recline increases the injury severity and shifts injury pattern. In Proceedings of the IMECE Conference, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Ngo, A.V.; Becker, J.; Thirunavukkarasu, D.; Urban, P.; Koetniyom, S.; Carmai, J. Investigation of occupant kinematics and injury risk in a reclined and rearward-facing seat under various frontal crash velocities. J. Saf. Res. 2021, 79, 26–37. [Google Scholar] [CrossRef]
- Jin, X.; Hou, H.; Shen, M.; Wu, H.; Yang, K.H. Occupant kinematics and biomechanics with rotatable seat in autonomous vehicle collision—A preliminary concept and strategy. In Proceedings of the IRCOBI Conference, Athens, Greece, 12–14 September 2018. [Google Scholar]
A | B | C | D | E | F | G |
---|---|---|---|---|---|---|
Three-point belt | Move forward anchor | Knee constraint | Enhanced pelvis constraint | Retractor on seatback | Four-point thorax belt | Retractor on seatback |
Simulation No. | Pretension Time (ms) | Seatbelt Form | Seat Constraint | Seat-Pan Spring Stiffness (N) 1 | Seat Acting Time |
---|---|---|---|---|---|
1 | 15 | A 2 | fixed | - | - |
2 | 9 | A | fixed | - | - |
3 | 9 | B | fixed | - | - |
4 | 9 | B + PLP | fixed | - | - |
5 | 9 | B + PLP + DLT 3 | fixed | - | - |
6 | 9 | C + PLP 4 | fixed | - | - |
7 | 9 | C + PLP + DLT | fixed | - | - |
8 | 9 | D + PLP | fixed | - | - |
9 | 9 | D + PLP | passive rotation | 1000 | during impact |
10 | 9 | D + PLP | passive rotation | 200–1000 | during impact |
11 | 9 | D + PLP | passive rotation | 200–1500 | during impact |
12 | 9 | E + PLP | passive rotation | 2000 | during impact |
13 | 9 | E + PLP | passive rotation | 200–2000 | during impact |
14 | 9 | E + PLP | passive rotation | 200–3000 | during impact |
15 | 9 | F + PLP | passive rotation | 500 | during impact |
16 | 9 | F + PLP | passive rotation | 1000 | during impact |
17 | 9 | G + PLP | passive rotation | 2000 | during impact |
18 | 9 | G + PLP | passive rotation | 4000 | during impact |
19 | 9 | G + PLP | active rotation | - | during impact |
20 | 9 | G + PLP | active rotation | - | before impact |
Simulation No. | Maximum Axial Force | Maximum Moment | ||||
---|---|---|---|---|---|---|
Value (N) | Location | Time (ms) | Value (N·m) | Location | Time (ms) | |
1 | 2574.2 | T12-L1 | 67 | 30.4 | T12-L1 | 93 |
2 | 2969.8 | T11-T12 | 94 | 34.1 | T12-L1 | 94 |
3 | 3833.9 | T11-T12 | 87 | 34.1 | T12-L1 | 92 |
4 | 4043.2 | T11-T12 | 88 | 34.5 | T12-L1 | 90 |
5 | 5061.9 | T12-L1 | 90 | 44.2 | T12-L1 | 87 |
6 | 5022.3 | T11-T12 | 79 | 39.4 | T12-L1 | 83 |
7 | 5359.3 | T12-L1 | 86 | 40.9 | T12-L1 | 83 |
8 | 4807.7 | T11-T12 | 93 | 38 | T12-L1 | 91 |
9 | 4003.4 | T11-T12 | 90 | 33.3 | T12-L1 | 90 |
10 | 3863.2 | T11-T12 | 89 | 32.2 | T12-L1 | 86 |
11 | 3924.7 | T11-T12 | 89 | 32.5 | T12-L1 | 87 |
12 | 3683.5 | L1-L2 | 104 | 25.3 | T12-L1 | 101 |
13 | 4375.5 | T12-L1 | 103 | 30.1 | T12-L1 | 101 |
14 | 4179.1 | T12-L1 | 104 | 30.1 | T12-L1 | 102 |
15 | 2756.9 | T12-L1 | 93 | 27.2 | T12-L1 | 95 |
16 | 2849.2 | T11-T12 | 94 | 28.3 | T12-L1 | 93 |
17 | 1787.2 | L2-L3 | 64 | 16.8 | L2-L3 | 159 |
18 | 1870.9 | L2-L3 | 64 | 13.7 | T12-L1 | 122 |
19 | 2140.2 | L1-L2 | 110 | 20.7 | T12-L1 | 110 |
20 | 2142 | T12-L1 | 162 | 22 | T12-L1 | 184 |
Simulation No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Pelvis Maximum Stain (%) | 4.6 | 2.6 | 3.8 | 3.8 | 5.6 | 3.4 | 3 | 2.2 | 1.9 | 1.9 |
Femur Maximum Stain (%) | 0.38 | 0.35 | 0.54 | 0.59 | 1.3 | 1.2 | 1.1 | 0.5 | 0.4 | 0.4 |
Knee Excursion (mm) | 273 | 252 | 260 | 251 | 154 | 116 | 95 | 113.2 | 162 | 185 |
Simulation No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Pelvis Maximum Stain (%) | 2 | 2.4 | 3 | 2.4 | 2.1 | 1.9 | 2.7 | 1.9 | 2 | 2.7 |
Femur Maximum Stain (%) | 0.4 | 0.8 | 0.7 | 0.7 | 0.5 | 0.5 | 0.8 | 0.5 | 0.5 | 0.6 |
Knee Excursion (mm) | 185 | 265 | 278 | 272 | 182 | 180 | 300 | 245 | 270 | 313.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, F.; Wang, Y.; Jian, Q.; Lan, F.; Chen, J. The Effectiveness of Swiveling Seats in Protecting Reclined Occupants in Highly Autonomous Driving Environments during Frontal Crashes. Appl. Sci. 2024, 14, 349. https://doi.org/10.3390/app14010349
Tong F, Wang Y, Jian Q, Lan F, Chen J. The Effectiveness of Swiveling Seats in Protecting Reclined Occupants in Highly Autonomous Driving Environments during Frontal Crashes. Applied Sciences. 2024; 14(1):349. https://doi.org/10.3390/app14010349
Chicago/Turabian StyleTong, Fang, Yuchao Wang, Qifei Jian, Fengchong Lan, and Jiqing Chen. 2024. "The Effectiveness of Swiveling Seats in Protecting Reclined Occupants in Highly Autonomous Driving Environments during Frontal Crashes" Applied Sciences 14, no. 1: 349. https://doi.org/10.3390/app14010349
APA StyleTong, F., Wang, Y., Jian, Q., Lan, F., & Chen, J. (2024). The Effectiveness of Swiveling Seats in Protecting Reclined Occupants in Highly Autonomous Driving Environments during Frontal Crashes. Applied Sciences, 14(1), 349. https://doi.org/10.3390/app14010349