Multi-Physics Field Computation for Microwave Heating of Multi-Mobile Components Based on Transformation Optics and Implicit Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Governing Equations
2.2.1. Governing Equations of Physical Field
2.2.2. Boundary Conditions and Initial Values
2.2.3. Governing Equations for Lifting and Rotating Motion Computation
2.3. Computation Procedure
2.4. Mesh and Time Step
2.5. Experimental Setup
3. Results
3.1. Model Validation
3.1.1. Electromagnetic Field Validation
3.1.2. Experimental Validation
4. Discussion
4.1. Comparison of Computation Details of Conventional Method
4.2. Microwave Heating on the Sample with the Lifting Motion
4.3. Microwave Heating on Sample with Rotating Motion
4.4. Microwave Heating on the Sample with Spiral Motion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adam, D. Microwave chemistry: Out of the kitchen. Nature 2003, 421, 571–572. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.K.; Anantheswaran, R.C. Handbook of Microwave Technology for Food Applications; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- Bae, S.H.; Jeong, M.G.; Kim, J.H.; Lee, W.S. A Continuous Power-Controlled Microwave Belt Drier Improving Heating Uniformity. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 527–529. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T. A theoretical analysis on the effect of containers on the microwave heating of materials. Int. Commun. Heat Mass Tran. 2017, 82, 145–153. [Google Scholar] [CrossRef]
- Whittaker, A.; Mingos, D. The Application of Microwave Heating to Chemical Syntheses. J. Microw. Power Electromagn. Energy 1994, 29, 195–219. [Google Scholar] [CrossRef]
- Horikoshi, S.; Nakamura, K.; Yashiro, M.; Kadomatsu, K.; Serpone, N. Proding the effect(s) of the microwaves’ electromagnetic fields in enzymatic reactions. Sci. Rep. 2019, 9, 8945. [Google Scholar] [CrossRef]
- Horikoshi, S.; Watanabe, T.; Narita, A.; Suzuki, Y.; Serpone, N. The electromagnetic wave energy effect(s) in microwave–assisted organic syntheses (MAOS). Sci. Rep. 2018, 8, 5151. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.S. Non-uniform temperature distribution during microwave heating of food materials—A review. Food Bioprocess Technol. 2008, 3, 161–171. [Google Scholar] [CrossRef]
- Ryynänen, S.; Ohlsson, T. Microwave heating uniformity of ready meals as affected by placement, composition, and geometry. J. Food Sci. 1996, 61, 620–624. [Google Scholar] [CrossRef]
- Sakai, N.; Mao, W.; Koshima, Y.; Watanabe, M. A method for developing model food system in microwave heating studies. J. Food Eng. 2005, 66, 525–531. [Google Scholar] [CrossRef]
- Kashyap, S.C.; Wyslouzil, W. Methods for improving heating uniformity of microwave ovens. J. Microw. Power Electromagn. Energy 1977, 12, 223–230. [Google Scholar]
- Zhou, L.; Puri, V.; Anantheswaran, R.; Yeh, G. Finite element modeling of heat and mass transfer in food materials during microwave heating—Model development and validation. J. Food Eng. 1995, 25, 509–529. [Google Scholar] [CrossRef]
- Liu, S.-X.; Fukuoka, M.; Sakai, N. A finite element model for simulating temperature distributions in rotating food during microwave heating. J. Food Eng. 2013, 1, 49–62. [Google Scholar] [CrossRef]
- Chatterjee, S.; Basak, T.; Das, S.K. Microwave driven convection in a rotating cylindrical cavity: A numerical study. J. Food Eng. 2007, 79, 1269–1279. [Google Scholar] [CrossRef]
- Plaza-Gonzalez, P.; Monzo-Cabrera, J.; Catala-Civera, J.; Sanchez-Hernandez, D. New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers. IEEE Trans. Magn. 2004, 40, 1672–1678. [Google Scholar] [CrossRef]
- Plaza-Gonzalez, P.; Monzo-Cabrera, J.; Catala-Civera, J.; Sanchez-Hernandez, D. Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators. IEEE Trans. Microw. Theory Tech. 2005, 53, 1699–1706. [Google Scholar] [CrossRef]
- Geedipalli, S.; Rakesh, V.; Datta, A. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. J. Food Eng. 2007, 82, 359–368. [Google Scholar] [CrossRef]
- Pitchai, K.; Chen, J.; Birla, S.; Gonzalez, R.; Jones, D.; Subbiah, J. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: Development and validation. J. Food Eng. 2014, 128, 60–71. [Google Scholar] [CrossRef]
- Ye, J.-H.; Zhu, H.-C.; Liao, Y.-H.; Zhou, Y.-P.; Huang, K.-M. Implicit Function and Level Set Methods for Computation of Moving Elements During Microwave Heating. IEEE Trans. Microw. Theory Tech. 2017, 65, 4773–4784. [Google Scholar] [CrossRef]
- Zhu, H.-C.; Liao, Y.-H.; Xiao, W.; Ye, J.-H.; Huang, K.-M. Transformation optics for computing heating process in microwave applicators with moving elements. IEEE Trans. Microw. Theory Tech. 2017, 65, 1434–1442. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 3rd ed.; Wiley: New York, NY, USA, 2005; Chapter 1. [Google Scholar]
- Ye, J.; Xia, Y.; Yi, Q.; Zhu, H.; Yang, Y.; Huang, K.; Shi, K. Multiphysics modeling of microwave heating of solid samples in rotary lifting motion in a rectangular multi-mode cavity. Innov. Food Sci. Emerg. Technol. 2021, 73, 102767. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
Property | Applied Domain | Value | Source |
---|---|---|---|
Dielectric constant (ε′) | Air | 1 | COMSOL build-in |
Potato | −6.4 × 10−3 T2 + 2 × 10−1 T + 56.8 | [13] | |
Turntable | 4.2 | COMSOL build-in | |
Support rod | 2.3 | COMSOL build-in | |
Dielectric loss (ε″) | Potato | −10−4 T2 − 1.08 × 10−1 T + 16.1 | [13] |
Others | 0 | COMSOL build-in | |
Density (kg/m3) | Potato | 1050 | [13] |
Thermal conductivity (W/(m3·K)) | Potato | 0.64 | [13] |
Turntable | 1.4 | COMSOL build-in | |
Support rod | 0.38 | COMSOL build-in | |
Specific heat capacity (J/(kg·K)) | Potato | 4180 | [13] |
Method | Elements | Time (s) | RMSE |
---|---|---|---|
Proposed method | 1,498,036 | 2937 | 0.1321 |
Implicit function and level set method 1 | 1,492,215 | 2041 | 0.2128 |
Implicit function and level set method 2 | 2,826,543 | 7984 | 0.1330 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Gu, H.; Zhu, H.; Yang, Y. Multi-Physics Field Computation for Microwave Heating of Multi-Mobile Components Based on Transformation Optics and Implicit Function. Appl. Sci. 2024, 14, 58. https://doi.org/10.3390/app14010058
Chen H, Gu H, Zhu H, Yang Y. Multi-Physics Field Computation for Microwave Heating of Multi-Mobile Components Based on Transformation Optics and Implicit Function. Applied Sciences. 2024; 14(1):58. https://doi.org/10.3390/app14010058
Chicago/Turabian StyleChen, Haoming, Hao Gu, Huacheng Zhu, and Yang Yang. 2024. "Multi-Physics Field Computation for Microwave Heating of Multi-Mobile Components Based on Transformation Optics and Implicit Function" Applied Sciences 14, no. 1: 58. https://doi.org/10.3390/app14010058
APA StyleChen, H., Gu, H., Zhu, H., & Yang, Y. (2024). Multi-Physics Field Computation for Microwave Heating of Multi-Mobile Components Based on Transformation Optics and Implicit Function. Applied Sciences, 14(1), 58. https://doi.org/10.3390/app14010058