Towards Personally Relevant Navigation: The Differential Effects of Cognitive Style and Map Orientation on Spatial Knowledge Development
Abstract
:1. Introduction
1.1. Cognitive Style
1.2. Cognitive Style and Map Orientation
1.3. Cognitive Style and Spatial Ability
1.4. Cognitive Style and Spatial Strategy
1.5. Cognitive Style and Spatial Knowledge
2. Methodology
2.1. Research Hypothesis
2.2. Participants
2.3. Study Environment
2.4. Test Materials
2.4.1. Spatial Ability Measures
2.4.2. Cognitive Style Measure
2.4.3. Route Knowledge Measures
2.4.4. Survey Knowledge Measures
2.5. Procedure
3. Results
3.1. Results: Participants’ Demographics
3.1.1. Participants’ Cognitive Style
3.1.2. Spatial Abilities
3.2. The Effect of Map Orientation on Spatial Knowledge Development
3.2.1. Pointing Direction Test by Cognitive Style
3.2.2. Sketch Map Test by Cognitive Style
3.2.3. Landmark Sequencing by Cognitive Style
3.2.4. Route Retracing by Cognitive Style
4. Discussion
4.1. Cognitive Style Difference
4.2. The Effect of Map Orientation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahrzad, P.; Nasser, N. GABAb Receptor Antagonist (CGP35348) Improves Testosterone Induced Spatial Acquisition Impairment in Adult Male Rat. J. Behav. Brain Sci. 2015, 5, 491. [Google Scholar] [CrossRef]
- Pelechano, N.; Badler, N.I. Improving the Realism of Agent Movement for High Density Crowd Simulation; University of Pennsylvania, Center for Human Modeling and Simulation: Philadelphia, PA, USA, 2006. [Google Scholar]
- Snopková, D.; Ugwitz, P.; Stachoň, Z.; Hladík, J.; Juřík, V.; Kvarda, O.; Kubíček, P. Retracing evacuation strategy: A virtual reality game-based investigation into the influence of building’s spatial configuration in an emergency. Spat. Cogn. Comput. 2022, 22, 30–50. [Google Scholar] [CrossRef]
- Clinch, S.; Cortis Mack, C.; Ward, G.; Steeds, M. Technology-mediated memory impairment. In Technology-Augmented Perception and Cognition; Springer: Cham, Switzerland, 2021; pp. 71–124. [Google Scholar]
- Dahmani, L.; Bohbot, V.D. Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Sci. Rep. 2020, 10, 6310. [Google Scholar] [CrossRef] [PubMed]
- Yount, Z.F.; Kass, S.J.; Arruda, J.E. Route learning with augmented reality navigation aids. Transp. Res. Part F Traffic Psychol. Behav. 2022, 88, 132–140. [Google Scholar] [CrossRef]
- Gardony, A.L.; Brunyé, T.T.; Mahoney, C.R.; Taylor, H.A. How Navigational Aids Impair Spatial Memory: Evidence for Divided Attention. Spat. Cogn. Comput. 2013, 13, 319–350. [Google Scholar] [CrossRef]
- Wang, R.F.; Spelke, E.S. Updating egocentric representations in human navigation. Cognition 2000, 77, 215–250. [Google Scholar] [CrossRef]
- Brunyé, T.T.; Burte, H.; Houck, L.A.; Taylor, H.A. The map in our head is not oriented north: Evidence from a real-world environment. PLoS ONE 2015, 10, e0135803. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Schmidt, K. Environmental reference systems for large-scale spaces. Spat. Cogn. Comput. 1999, 1, 447–473. [Google Scholar] [CrossRef]
- Montello, D.R. Spatial Orientation and the Angularity of Urban Routes: A Field Study. Environ. Behav. 1991, 23, 47–69. [Google Scholar] [CrossRef]
- Zhao, H.; Frese, L.; Venzin, C.; Kaszás, D.; Weibel, R.P.; Hölscher, C.; Schinazi, V.R.; Thrash, T. The time course of spatial knowledge acquisition for different digital navigation aids. Comput. Environ. Urban Syst. 2023, 103, 101992. [Google Scholar] [CrossRef]
- Blajenkova, O.; Motes, M.A.; Kozhevnikov, M. Individual differences in the representations of novel environments. J. Environ. Psychol. 2005, 25, 97–109. [Google Scholar] [CrossRef]
- Ishikawa, T.; Montello, D.R. Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cogn. Psychol. 2006, 52, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, N.S.; Hegarty, M.; Uttal, D. Building a cognitive science of human variation: Individual differences in spatial navigation. Top. Cogn. Sci. 2023, 15, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T. Individual differences and skill training in cognitive mapping: How and why people differ. Top. Cogn. Sci. 2023, 15, 163–186. [Google Scholar] [CrossRef]
- Hegarty, M.; He, C.; Boone, A.P.; Yu, S.; Jacobs, E.G.; Chrastil, E.R. Understanding Differences in Wayfinding Strategies. Top. Cogn. Sci. 2023, 15, 102–119. [Google Scholar] [CrossRef]
- Mazza, V.; Jacob, J.; Dammhahn, M.; Zaccaroni, M.; Eccard, J.A. Individual variation in cognitive style reflects foraging and anti-predator strategies in a small mammal. Sci. Rep. 2019, 9, 10157. [Google Scholar] [CrossRef]
- Messick, S. The nature of cognitive styles: Problems and promise in educational practice. Educ. Psychol. 1984, 19, 59–74. [Google Scholar] [CrossRef]
- Blazhenkova, O.; Kozhevnikov, M. The new object-spatial-verbal cognitive style model: Theory and measurement. Appl. Cogn. Psychol. 2009, 23, 638–663. [Google Scholar] [CrossRef]
- Vranic, A.; Rebernjak, B.; Martincevic, M. Cognitive style: The role of personality and need for cognition in younger and older adults. Curr. Psychol. 2021, 40, 4460–4467. [Google Scholar] [CrossRef]
- Schwartz, N.H.; Phillippe, A.E. Individual differences in the retention of maps. Contemp. Educ. Psychol. 1991, 16, 171–182. [Google Scholar] [CrossRef]
- Giancola, M.; Palmiero, M.; D’Amico, S. Field dependent–independent cognitive style and creativity from the process and product-oriented approaches: A systematic review. Creat. Stud. 2022, 15, 542–559. [Google Scholar] [CrossRef]
- Witkin, H.A.; Moore, C.A.; Goodenough, D.R.; Cox, P.W. Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications. Rev. Educ. Res. 1977, 47, 1–64. [Google Scholar] [CrossRef]
- Kirby, J.R.; Moore, P.J.; Schofield, N.J. Verbal and visual learning styles. Contemp. Educ. Psychol. 1988, 13, 169–184. [Google Scholar] [CrossRef]
- Oltman, P.K.; Raskin, E.; Witkin, H.A. Group Embedded Figures Test; Consulting Psychologists Press: Palo Alto, CA, USA, 1971. [Google Scholar]
- Street, R.F. A Gestalt Completion Test; Teachers College Contributions to Education; Columbia University: New York, NY, USA, 1931; Volume 481, p. 45. [Google Scholar]
- French, J.W.; Ekstrom, R.B.; Price, L.A. Manual for Kit of Reference Tests for Cognitive Factors (Revised 1963); Educational Testing Service: Princeton, NJ, USA, 1963. [Google Scholar]
- Cheng, C.; Rau PL, P.; Guo, Z. Effects of Field Dependency and Map Type on Wayfinding Strategies. In International Conference on Human-Computer Interaction; Springer International Publishing: Cham, Switzerland, 2022; pp. 315–329. [Google Scholar]
- Nori, R.; Boccia, M.; Palmiero, M.; Piccardi, L. The contribution of field independence in virtual spatial updating. Curr. Psychol. 2023, 42, 4567–4576. [Google Scholar] [CrossRef]
- Pazzaglia, F.; Taylor, H.A. Perspective, Instruction, and Cognitive Style in Spatial Representation of a Virtual Environment. Spat. Cogn. Comput. 2007, 7, 349–364. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Wu, C.; Mei, D. Effects of Field Dependence-Independence and Frame of Reference on Navigation Performance Using Multi-dimensional Electronic Maps. Personal. Individ. Differ. 2016, 97, 289–299. [Google Scholar] [CrossRef]
- Akkaya, M. The Relationship Between High School Students’ Cognitive Style and Spatial Ability in Ankara Çankaya. Master’s Thesis, Bilkent Universitesi, Ankara, Turkey, 2021. [Google Scholar]
- Boccia, M.; Piccardi, L.; Di Marco, M.; Pizzamiglio, L.; Guariglia, C. Does field independence predict visuo-spatial abilities underpinning human navigation? Behavioural evidence. Exp. Brain Res. 2016, 234, 2799–2807. [Google Scholar] [CrossRef]
- Bintoro, H.S.; Sukestiyarno, Y.L.; Mulyono, W.W. The spatial thinking process of the field-dependent students in reconstructing the geometrical concept. Int. J. Eval. Res. Educ. 2022, 2252, 1117. [Google Scholar] [CrossRef]
- Denis, M.; Pazzaglia, F.; Cornoldi, C.; Bertolo, L. Spatial discourse and navigation: An analysis of route directions in the city of Venice. Appl. Cogn. Psychol. 1999, 13, 145–174. [Google Scholar] [CrossRef]
- Pazzaglia, F.; De Beni, R. Strategies of processing spatial information in survey and landmark-centred individuals. Eur. J. Cogn. Psychol. 2001, 13, 493–508. [Google Scholar] [CrossRef]
- Bocchi, A.; Giancola, M.; Piccardi, L.; Palmiero, M.; Nori, R.; D’Amico, S. How would you describe a familiar route or put in order the landmarks along it? It depends on your cognitive style! Exp. Brain Res. 2018, 236, 3121–3129. [Google Scholar] [CrossRef] [PubMed]
- Boccia, M.; Vecchione, F.; Piccardi, L.; Guariglia, C. Effect of Cognitive Style on Learning and Retrieval of Navigational Environments. Front. Pharmacol. 2017, 8, 283140. [Google Scholar] [CrossRef] [PubMed]
- Kroutter, P.J., Jr. The Influence of Field Dependence/Independence, Gender, and Experience on Navigational Behavior and Configurational Knowledge Acquisition in a Desktop Virtual Reality Environment; Oklahoma State University: Stillwater, OK, USA, 2010. [Google Scholar]
- Maneuvrier, A.; Decker, L.M.; Ceyte, H.; Fleury, P.; Renaud, P. Presence promotes performance on a virtual spatial cognition task: Impact of human factors on virtual reality assessment. Front. Virtual Real. 2020, 1, 571713. [Google Scholar] [CrossRef]
- Rosenzweig, E.S.; Barnes, C.A. Impact of aging on hippocampal function: Plasticity, network dynamics, and cognition. Prog. Neurobiol. 2003, 69, 143–179. [Google Scholar] [CrossRef]
- Moffat, S.D. Aging and Spatial Navigation: What Do We Know and Where Do We Go? Neuropsychol. Rev. 2009, 19, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Devlin, A.L.; Wilson, P.H. Adult Age Differences in the Ability to Mentally Transform Object and Body Stimuli. Aging Neuropsychol. Cogn. 2010, 17, 709–729. [Google Scholar] [CrossRef] [PubMed]
- Lingwood, J.; Blades, M.; Farran, E.K.; Courbois, Y.; Matthews, D. The development of wayfinding abilities in children: Learning routes with and without landmarks. J. Environ. Psychol. 2015, 41, 74–80. [Google Scholar] [CrossRef]
- Li, H.; Giudice, N.A. Assessment of between-floor structural and topological properties on cognitive map development in multilevel built environments. Spat. Cogn. Comput. 2018, 18, 138–172. [Google Scholar] [CrossRef]
- Castelli, L.; Latini Corazzini, L.; Geminiani, G.C. Spatial navigation in large-scale virtual environments: Gender differences in survey tasks. Comput. Hum. Behav. 2008, 24, 1643–1667. [Google Scholar] [CrossRef]
- Ekstrom, A.D.; Isham, E.A. Human spatial navigation: Representations across dimensions and scales. Curr. Opin. Behav. Sci. 2017, 17, 84–89. [Google Scholar] [CrossRef]
- Oman, C.M.; Shebilske, W.L.; Richards, J.T.; Tubré, T.C.; Beall, A.C.; Natapoff, A. Three dimensional spatial memory and learning in real and virtual environments. Spat. Cogn. Comput. 2000, 2, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Dünser, A.; Steinbügl, K.; Kaufmann, H.; Glück, J. Virtual and Augmented Reality as Spatial Ability Training Tools. In Proceedings of the 7th ACM SIGCHI New Zealand Chapter’s International Conference on Computer-Human Interaction: Design Centered HCI, Christchurch, New Zealand, 6–7 July 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 125–132. [Google Scholar]
- Kozhevnikov, M.; Motes, M.A.; Rasch, B.; Blajenkova, O. Perspective-taking vs. mental rotation transformations and how they predict spatial navigation performance. Appl. Cogn. Psychol. 2006, 20, 397–417. [Google Scholar] [CrossRef]
- Wiener, J.M.; Carroll, D.; Moeller, S.; Bibi, I.; Ivanova, D.; Allen, P.; Wolbers, T. A novel virtual-reality-based route-learning test suite: Assessing the effects of cognitive aging on navigation. Behav. Res. Methods 2020, 52, 630–640. [Google Scholar] [CrossRef]
- Galea, L.A.M.; Kimura, D. Sex differences in route-learning. Personal. Individ. Differ. 1993, 14, 53–65. [Google Scholar] [CrossRef]
- Huynh, N.T.; Doherty, S.T. Digital Sketch-Map Drawing as an Instrument to Collect Data about Spatial Cognition. Cartogr. Int. J. Geogr. Inf. Geovis. 2007, 42, 285–296. [Google Scholar] [CrossRef]
- Billinghurst, M.; Weghorst, S. (Eds.) The Use of Sketch Maps to Measure Cognitive Maps of Virtual Environments. In Proceedings of the Virtual Reality Annual International Symposium ’95, Research Triangle Park, NC, USA, 11–15 March 1995. [Google Scholar]
- Khatib, M.; Hosseinpur, R.M. On the Validity of the Group Embedded Figure Test (GEFT). J. Lang. Teach. Res. 2011, 2, 640–648. [Google Scholar] [CrossRef]
- Kafipour, R.; Khoshnood, A. Effect of feedback through dynamic assessment on EFL field-dependent and field-independent learners’ speaking skill development. Front. Educ. 2023, 8, 1049680. [Google Scholar] [CrossRef]
- Cakan, M. Psychometric data on the group embedded figures test for Turkish undergraduate students. Percept. Mot. Ski. 2003, 96, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Ferdowsi, S.; Razmi, M.H. Examining associations among emotional intelligence, creativity, self-efficacy, and simultaneous interpreting practice through the mediating effect of field dependence/independence: A path analysis approach. J. Psycholinguist. Res. 2022, 51, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Gardony, A.L.; Taylor, H.A.; Brunyé, T.T. Gardony Map Drawing Analyzer: Software for quantitative analysis of sketch maps. Behav. Res. Methods 2016, 48, 151–177. [Google Scholar] [CrossRef]
- Hoyek, N.; Collet, C.; Rastello, O.; Fargier, P.; Thiriet, P.; Guillot, A. Enhancement of Mental Rotation Abilities and Its Effect on Anatomy Learning. Teach. Learn. Med. 2009, 21, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Darken, R.P.; Peterson, B. Spatial orientation, wayfinding, and representation. In Handbook of Virtual Environments; CRC Press: Boca Raton, FL, USA, 2002; pp. 533–558. [Google Scholar]
- Freundschuh, S.M.; Gould, M.D.; Mark, D.M. Issues in Vehicle Navigation and Information Systems; IEEE: Piscataway, NJ, USA, 1989. [Google Scholar]
- Teghil, A.; Boccia, M.; Bonavita, A.; Guariglia, C. Temporal features of spatial knowledge: Representing order and duration of topographical information. Behav. Brain Res. 2019, 376, 112218. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, F.; Adornetti, I.; Cosentino, E.; Marini, A. Keeping the route and speaking coherently: The hidden link between spatial navigation and discourse processing. J. Neurolinguist. 2013, 26, 327–334. [Google Scholar] [CrossRef]
- Wiener, J.; Kmecova, H.; de Condappa, O. Route repetition and route retracing: Effects of cognitive aging. Front. Aging Neurosci. 2012, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Suha, H.; Spector, J.; et al. Extreme weather and climate change: Population health and health system implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
Group | Maze Type | Guide Map | ||
---|---|---|---|---|
1 | A | B | North-Up | Forward-Up |
2 | B | A | Forward-Up | North-Up |
3 | A | B | Forward-Up | North-Up |
4 | B | A | North-Up | Forward-Up |
Cognitive Style | Frequency | ||
---|---|---|---|
Male | Female | Total | |
FD | 6 | 9 | 15 |
FI | 17 | 8 | 25 |
Total | 23 | 17 | 40 |
Spatial Ability Dimension | Male | Female | FD | FI | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Visualization | 54.21 | 21.43 | 41.43 | 21.43 | 33.07 | 11.1 | 59.00 | 21.5 | 44.79 | 22.05 |
Orientation | 33.23 | 18.19 | 60.42 | 29.67 | 56.8 | 27.89 | 36.94 | 23.96 | 44.77 | 27.01 |
Relation | 50.00 | 15.9 | 50.00 | 17.87 | 45.00 | 16.07 | 53.25 | 16.33 | 50.00 | 16.49 |
Condition | Cognitive Style | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
North-Up | FD | 85.57 | 16.37 | 61.25 | 119.8 |
FI | 70.58 | 26.28 | 32.42 | 105.08 | |
Forward-Up | FD | 75.78 | 14.02 | 47.75 | 95.75 |
FI | 71.25 | 25.69 | 14 | 100.17 |
Map | GEFT | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
North-up | FD | 0.57 | 0.21 | 0.22 | 0.77 |
FI | 0.63 | 0.2 | 0 | 0.99 | |
Forward-up | FD | 0.5 | 0.25 | 0 | 0.82 |
FI | 0.54 | 0.22 | 0.22 | 0.99 |
Map | GEFT | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
North-up | FD | 0.6 | 0.18 | 0.34 | 0.89 |
FI | 0.64 | 0.21 | 0.37 | 0.99 | |
Forward-up | FD | 0.58 | 0.13 | 0.35 | 0.84 |
FI | 0.51 | 0.2 | 0.09 | 0.92 |
Map Orientation | Cognitive Style | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
North-up | FD | 3.85 | 1.07 | 2 | 5 |
FI | 5.65 | 1.18 | 3 | 7 | |
Forward-up | FD | 4.94 | 1.44 | 3 | 7 |
FI | 5.3 | 1.51 | 2 | 7 |
Map Orientation | Cognitive Style | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
North-up | FD | 145.77 | 108.38 | 43 | 375 |
FI | 145.15 | 86.44 | 29 | 333 | |
Forward-up | FD | 154.15 | 97.06 | 42 | 343 |
FI | 124.35 | 66.87 | 37 | 260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Dixit, M.K.; Pariafsai, F. Towards Personally Relevant Navigation: The Differential Effects of Cognitive Style and Map Orientation on Spatial Knowledge Development. Appl. Sci. 2024, 14, 4012. https://doi.org/10.3390/app14104012
Park H, Dixit MK, Pariafsai F. Towards Personally Relevant Navigation: The Differential Effects of Cognitive Style and Map Orientation on Spatial Knowledge Development. Applied Sciences. 2024; 14(10):4012. https://doi.org/10.3390/app14104012
Chicago/Turabian StylePark, Hannah, Manish K. Dixit, and Fatemeh Pariafsai. 2024. "Towards Personally Relevant Navigation: The Differential Effects of Cognitive Style and Map Orientation on Spatial Knowledge Development" Applied Sciences 14, no. 10: 4012. https://doi.org/10.3390/app14104012
APA StylePark, H., Dixit, M. K., & Pariafsai, F. (2024). Towards Personally Relevant Navigation: The Differential Effects of Cognitive Style and Map Orientation on Spatial Knowledge Development. Applied Sciences, 14(10), 4012. https://doi.org/10.3390/app14104012