Cornus mas L. Extract-Mediated Modulations of the Redox State Induce Cytotoxicity in Schizosaccharomyces pombe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Materials
2.2. Yeast Strain and Cultivation
2.3. Assessment of the Cell Growth
2.4. Preparation of Cell Extracts for Biochemical Analyses and Oxidative Stress Studies
2.5. Determination of Oxidative Stress Parameters
2.6. The Respiration Activity of Yeast Cells
2.7. Reactive Oxygen Species Generation
2.8. Gene Expression
2.9. Statistical Analysis
3. Results
3.1. Effect of Cornus mas L. Fruit Ethanol Extract on Cell Growth
3.2. Impact of Cornus mas L. Fruit Ethanol Extract on ROS Generation, MDA Content, and Respiration Activity in S. pombe
3.3. Relation between Antioxidant Enzyme Activity (CAT and SOD) and Gene Expression (ctt1, sod1, sod2, and pgr1)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. Oxidative Stress Factors in Parkinson’s Disease. Neural Regen. Res. 2020, 16, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Akhigbe, R.E.; Ajayi, A.F.; Ram, S.K. Oxidative Stress and Cardiometabolic Disorders. Biomed. Res. Int. 2021, 2021, 9872109. [Google Scholar] [CrossRef] [PubMed]
- Klaunig, J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2018, 24, 4771–4778. [Google Scholar] [CrossRef] [PubMed]
- Deponte, M. Glutathione Catalysis and the Reaction Mechanisms of Glutathione-Dependent Enzymes. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2013, 1830, 3217–3266. [Google Scholar] [CrossRef] [PubMed]
- Pilipović, K.; Jurišić Grubešić, R.; Dolenec, P.; Kučić, N.; Juretić, L.; Mršić-Pelčić, J. Plant-Based Antioxidants for Prevention and Treatment of Neurodegenerative Diseases: Phytotherapeutic Potential of Laurus Nobilis, Aronia Melanocarpa, and Celastrol. Antioxidants 2023, 12, 746. [Google Scholar] [CrossRef]
- Tran, N.; Pham, B.; Le, L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology 2020, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Stefanescu, R.; Stanciu, G.D.; Luca, A.; Paduraru, L.; Tamba, B.-I. Secondary Metabolites from Plants Possessing Inhibitory Properties against Beta-Amyloid Aggregation as Revealed by Thioflavin-T Assay and Correlations with Investigations on Transgenic Mouse Models of Alzheimer’s Disease. Biomolecules 2020, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021, 26, 1109. [Google Scholar] [CrossRef]
- Kazimierski, M.; Regula, J.; Molska, M. Cornelian Cherry (Cornus mas L.)—Characteristics, Nutritional and pro-Health Properties. Acta Sci. Pol. Technol. Aliment. 2019, 18, 5–12. [Google Scholar] [CrossRef]
- Czerwińska, M.E.; Melzig, M.F. Cornus mas and Cornus Officinalis—Analogies and Differences of Two Medicinal Plants Traditionally Used. Front. Pharmacol. 2018, 9, 391112. [Google Scholar] [CrossRef] [PubMed]
- Aurori, M.; Niculae, M.; Hanganu, D.; Pall, E.; Cenariu, M.; Vodnar, D.C.; Bunea, A.; Fiţ, N.; Andrei, S. Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals 2023, 16, 420. [Google Scholar] [CrossRef] [PubMed]
- Dinda, B.; Kyriakopoulos, A.M.; Dinda, S.; Zoumpourlis, V.; Thomaidis, N.S.; Velegraki, A.; Markopoulos, C.; Dinda, M. Cornus mas L. (Cornelian Cherry), an Important European and Asian Traditional Food and Medicine: Ethnomedicine, Phytochemistry and Pharmacology for Its Commercial Utilization in Drug Industry. J. Ethnopharmacol. 2016, 193, 670–690. [Google Scholar] [CrossRef]
- Lidiková, J.; Čeryová, N.; Grygorieva, O.; Bobková, A.; Bobko, M.; Árvay, J.; Šnirc, M.; Brindza, J.; Ňorbová, M.; Harangozo, Ľ.; et al. Cornelian Cherry (Cornus mas L.) as a Promising Source of Antioxidant Phenolic Substances and Minerals. Eur. Food Res. Technol. 2024. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional Properties of Cornelian Cherry (Cornus mas L.): A Comprehensive Review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef]
- Milenkovic-Andjelkovic, A.; Andjelkovic, M.; Radovanovic, A.; Radovanovic, B.; Nikolic, V. Phenol Composition, DPPH Radical Scavenging and Antimicrobial Activity of Cornelian Cherry (Cornus Mas) Fruit and Leaf Extracts. Hem. Ind. 2015, 69, 331–337. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A.; Kucharska, A.Z.; Fecka, I. Composition and Antibacterial Activity of Aronia Melanocarpa (Michx.) Elliot, Cornus mas L., and Chaenomeles Superba Lindl. Leaf Extracts. Molecules 2020, 25, 2011. [Google Scholar] [CrossRef]
- Tiptiri-Kourpeti, A.; Fitsiou, E.; Spyridopoulou, K.; Vasileiadis, S.; Iliopoulos, C.; Galanis, A.; Vekiari, S.; Pappa, A.; Chlichlia, K. Evaluation of Antioxidant and Antiproliferative Properties of Cornus mas L. Fruit Juice. Antioxidants 2019, 8, 377. [Google Scholar] [CrossRef]
- Wójciak, M.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Ziemlewska, A.; Furman-Toczek, D.; Szczepanek, D.; Sowa, I. In Vitro Evaluation of Anti-Inflammatory and Protective Potential of an Extract from Cornus mas L. Fruit against H2O2-Induced Oxidative Stress in Human Skin Keratinocytes and Fibroblasts. Int. J. Mol. Sci. 2022, 23, 13755. [Google Scholar] [CrossRef]
- Lewandowski, Ł.; Bednarz-Misa, I.; Kucharska, A.Z.; Kubiak, A.; Kasprzyk, P.; Sozański, T.; Przybylska, D.; Piórecki, N.; Krzystek-Korpacka, M. Cornelian Cherry (Cornus mas L.) Extracts Exert Cytotoxicity in Two Selected Melanoma Cell Lines-A Factorial Analysis of Time-Dependent Alterations in Values Obtained with SRB and MTT Assays. Molecules 2022, 27, 4193. [Google Scholar] [CrossRef]
- Lietava, J.; Beerova, N.; Klymenko, S.V.; Panghyova, E.; Varga, I.; Pechanova, O. Effects of Cornelian Cherry on Atherosclerosis and Its Risk Factors. Oxid. Med. Cell Longev. 2019, 2019, 2515270. [Google Scholar] [CrossRef] [PubMed]
- Mesgari Abbasi, M.; Hassanalilou, T.; Khordadmehr, M.; Mohammadzadeh Vardin, A.; Behroozi Kohlan, A.; Khalili, L. Effects of Cornus mas Fruit Hydro-Methanolic Extract on Liver Antioxidants and Histopathologic Changes Induced by Cisplatin in Rats. Ind. J. Clin. Biochem. 2020, 35, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Dzydzan, O.; Bila, I.; Kucharska, A.Z.; Brodyak, I.; Sybirna, N. Antidiabetic Effects of Extracts of Red and Yellow Fruits of Cornelian Cherries (Cornus mas L.) on Rats with Streptozotocin-Induced Diabetes Mellitus. Food Funct. 2019, 10, 6459–6472. [Google Scholar] [CrossRef]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic Potential of Flavonoids in Cancer: ROS-Mediated Mechanisms. Biomed. Pharmacother. 2022, 146, 112442. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, Y.; Ohishi, T.; Nakamura, Y.; Fukutomi, R.; Miyoshi, N. Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. Molecules 2022, 27, 3816. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.; Sheth, C.C.; Veses, V. Herbal Extracts with Antifungal Activity against Candida Albicans: A Systematic Review. Mini Rev. Med. Chem. 2021, 21, 90–117. [Google Scholar] [CrossRef] [PubMed]
- Sitheeque, M.a.M.; Panagoda, G.J.; Yau, J.; Amarakoon, A.M.T.; Udagama, U.R.N.; Samaranayake, L.P. Antifungal Activity of Black Tea Polyphenols (Catechins and Theaflavins) against Candida Species. Chemotherapy 2009, 55, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.L.; Evangelista, A.J.J. Mimosa Tenuiflora’s Antimicrobial Activity on Bacteria and Fungi from Medical Importance: An Integrative Review. Arch. Microbiol. 2021, 203, 3399–3406. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.; Freitas, A.V.; Ralston, Z.A.; Tang, Z. Fission Yeast Schizosaccharomyces Pombe: A Unicellular “Micromammal” Model Organism. Curr. Protoc. 2021, 1, e151. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Navrátilová, A.; Kovár, M.; Požgajová, M. Ascorbic Acid Mitigates Cadmium-Induced Stress, and Contributes to Ionome Stabilization in Fission Yeast. Env. Sci. Pollut. Res. 2021, 28, 15380–15393. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bayliak, M.M.; Burdylyuk, N.I.; Lushchak, V.I. Quercetin Increases Stress Resistance in the Yeast Saccharomyces Cerevisiae Not Only as an Antioxidant. Ann. Microbiol. 2016, 66, 569–576. [Google Scholar] [CrossRef]
- Ďurovcová, I.; Goffa, E.; Šestáková, Z.; Mániková, D.; Gaplovská-Kyselá, K.; Chovanec, M.; Ševčovičová, A. Acute Exposure to Bisphenol A Causes Oxidative Stress Induction with Mitochondrial Origin in Saccharomyces Cerevisiae Cells. J. Fungi 2021, 7, 543. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Krzyściak, P.; Krosniak, M.; Gąstoł, M.; Ochońska, D.; Krzyściak, W. Antimicrobial Activity of Cornelian Cherry (Cornus mas L.). Postępy Fitoter. 2011, 4, 227–231. [Google Scholar]
- Miláčková, I.; Meščanová, M.; Ševčíková, V.; Mučaji, P. Water Leaves Extracts of Cornus mas and Cornus Kousa as Aldose Reductase Inhibitors: The Potential Therapeutic Agents. Chem. Pap. 2017, 71, 2335–2341. [Google Scholar] [CrossRef]
- Karğın, D.; Aktaç, Ş.; Hazar-Yavuz, A.; Cam, M. Effects of Cornus mas L. on Lipid Peroxidation and Anti-Oxidative Enzyme Activity in High Fat Diet Fed Rats. J. Res. Pharm. 2023, 27, 432–440. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Mohammadzadeh, S.; Kalhor, N.; Yousefi, M.; Moghadam, M.S.; Naraballobh, W.; Ahmadifar, M.; Hoseinifar, S.H.; Van Doan, H. Cornelian Cherry (Cornus mas L.) Fruit Extract Improves Growth Performance, Disease Resistance, and Serum Immune-and Antioxidant-Related Gene Expression of Common Carp (Cyprinus Carpio). Aquaculture 2022, 558, 738372. [Google Scholar] [CrossRef]
- Danielewski, M.; Rapak, A.; Kruszyńska, A.; Małodobra-Mazur, M.; Oleszkiewicz, P.; Dzimira, S.; Kucharska, A.Z.; Słupski, W.; Matuszewska, A.; Nowak, B.; et al. Cornelian Cherry (Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model. Int. J. Mol. Sci. 2024, 25, 1199. [Google Scholar] [CrossRef]
- Czerwińska, M.E.; Bobińska, A.; Cichocka, K.; Buchholz, T.; Woliński, K.; Melzig, M.F. Cornus mas and Cornus Officinalis-A Comparison of Antioxidant and Immunomodulatory Activities of Standardized Fruit Extracts in Human Neutrophils and Caco-2 Models. Plants 2021, 10, 2347. [Google Scholar] [CrossRef]
- Szot, I.; Łysiak, G.P.; Sosnowska, B.; Chojdak-Łukasiewicz, J. Health-Promoting Properties of Anthocyanins from Cornelian Cherry (Cornus mas L.) Fruits. Molecules 2024, 29, 449. [Google Scholar] [CrossRef] [PubMed]
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Pavan Jukić, D.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Raspor, P. The Antioxidant and Pro-Oxidant Activity of Vitamin C and Trolox in Vitro: A Comparative Study. J. Appl. Toxicol. 2008, 28, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Siems, W.; Wiswedel, I.; Salerno, C.; Crifò, C.; Augustin, W.; Schild, L.; Langhans, C.-D.; Sommerburg, O. Beta-Carotene Breakdown Products May Impair Mitochondrial Functions--Potential Side Effects of High-Dose Beta-Carotene Supplementation. J. Nutr. Biochem. 2005, 16, 385–397. [Google Scholar] [CrossRef]
- Halliwell, B. Are Polyphenols Antioxidants or Pro-Oxidants? What Do We Learn from Cell Culture and in Vivo Studies? Arch. Biochem. Biophys. 2008, 476, 107–112. [Google Scholar] [CrossRef]
- O’Brien, P.J. Molecular Mechanisms of Quinone Cytotoxicity. Chem. Biol. Interact. 1991, 80, 1–41. [Google Scholar] [CrossRef]
- Sochor, J.; Jurikova, T.; Ercisli, S.; Mlcek, J.; Baron, M.; Balla, S.; Yilmaz, S.O.; Necas, T. Characterization of Cornelian Cherry (Cornus mas L.) Genotypes—Genetic Resources for Food Production in Czech Republic. Genetika 2014, 46, 915–924. [Google Scholar] [CrossRef]
- Osuna, D.; Usadel, B.; Morcuende, R.; Gibon, Y.; Bläsing, O.E.; Höhne, M.; Günter, M.; Kamlage, B.; Trethewey, R.; Scheible, W.-R.; et al. Temporal Responses of Transcripts, Enzyme Activities and Metabolites after Adding Sucrose to Carbon-Deprived Arabidopsis Seedlings. Plant J. 2007, 49, 463–491. [Google Scholar] [CrossRef]
- Aksakal, E.; Ekinci, D.; Supuran, C.T. Dietary Inclusion of Royal Jelly Modulates Gene Expression and Activity of Oxidative Stress Enzymes in Zebrafish. J. Enzym. Inhib. Med. Chem. 2021, 36, 885–894. [Google Scholar] [CrossRef]
- Huang, X.-H.; Xu, N.; Feng, L.-G.; Lai, D.-N.; Wu, F.; Xu, D.; Guo, X. The Activity and Gene Expression of Enzymes in Mycelia of Pleurotus Eryngii under Cadmium Stress. Sustainability 2022, 14, 4125. [Google Scholar] [CrossRef]
- Robaszkiewicz, A.; Balcerczyk, A.; Bartosz, G. Antioxidative and Prooxidative Effects of Quercetin on A549 Cells. Cell Biol. Int. 2007, 31, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
Cornus mas L. | Content in Fruits [mg kg−1 fw] | References | Content in Extract [µg mL−1] | References |
---|---|---|---|---|
Vitamin C | 610.36–1344.1 | [15] | nd | |
Neochlorogenic acid | 2.67–8.66 | [15] | nd | |
Chlorogenic acid | 1.13–7.32 | [15,16] | 23.189 | [13] |
Caffeic acid | 0.07–6.02 | [15,16] | 57.15 | [13] |
Rutin | 6.67–20.67 | [15] | 29.63 | [13] |
Ellagic acid | 2.36–1.88 | [16] | nd | |
Epicatechin | 2.17–6.7 | [16] | nd | |
Catechin | 1.44–3.71 | [16] | nd | |
Kaempferol-3-O-galactoside | 36.69–41.3 | [16] | 11.023 | [13] |
Total Quercetin | 47.1–167.9 | [16] | nd |
Gene | Primer |
---|---|
act1 | F: 5′ AGA TTC TCA TGG AGC GTG GT 3′ |
R: 5′ TCA AAG TCC AAA GCG ACG TA 3′ | |
tbp1 | F: 5′ CTG TCG TCT TGA TCT CAA AAC TAT 3′ |
R: 5′ AAT TTA ACA TCG CAA CTT CCT AC 3′ | |
sod1 | F: 5′ ATT GGC CGT ACC ATT GTC AT 3′ |
R: 5′ GAC ACC ACA AGC GTT ACG TG 3′ | |
sod2 | F: 5′ TGG CAA ACC CGT CAC CTC TG 3′ |
R: 5′ GCC ATG CCC AAC CAC TAC CT 3′ | |
ctt1 | F: 5′ ATC CTC AAT CCG ACC ACT TG 3′ |
R: 5′ AAC GTC GGT AAT TTC GTC CA 3′ | |
pgr1 | F: 5′ TCG CAT ATT CCA GGA GCG GA 3′ |
R: 5′ ACA CCA GCA AGT TCA ACG GC 3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klongová, L.; Kovár, M.; Navrátilová, A.; Fialkova, V.; Požgajová, M. Cornus mas L. Extract-Mediated Modulations of the Redox State Induce Cytotoxicity in Schizosaccharomyces pombe. Appl. Sci. 2024, 14, 4049. https://doi.org/10.3390/app14104049
Klongová L, Kovár M, Navrátilová A, Fialkova V, Požgajová M. Cornus mas L. Extract-Mediated Modulations of the Redox State Induce Cytotoxicity in Schizosaccharomyces pombe. Applied Sciences. 2024; 14(10):4049. https://doi.org/10.3390/app14104049
Chicago/Turabian StyleKlongová, Lucia, Marek Kovár, Alica Navrátilová, Veronika Fialkova, and Miroslava Požgajová. 2024. "Cornus mas L. Extract-Mediated Modulations of the Redox State Induce Cytotoxicity in Schizosaccharomyces pombe" Applied Sciences 14, no. 10: 4049. https://doi.org/10.3390/app14104049
APA StyleKlongová, L., Kovár, M., Navrátilová, A., Fialkova, V., & Požgajová, M. (2024). Cornus mas L. Extract-Mediated Modulations of the Redox State Induce Cytotoxicity in Schizosaccharomyces pombe. Applied Sciences, 14(10), 4049. https://doi.org/10.3390/app14104049