Artificial Intelligence in Planning Oral Rehabilitations: Current Status
Funding
Conflicts of Interest
References
- Cortes, A.R.G. Digital Dentistry: A Step-by-Step Guide and Case Atlas, 1st ed.; Wiley Blackwell: Hoboken NJ, USA, 2022; pp. 12–15. [Google Scholar]
- Ayres, A.P.; Stival Correa, D.; de Moura e Costa, A.J.; Pradíes, G.; Rodriguez Gonzalez Cortes, A. The Use of Artificial Intelligence to Create a Virtual Patient for Oral and Maxillofacial Surgical Planning. Sci. Lett. 2024, 1, 6. [Google Scholar]
- Cortes, A.R.G. Digital versus Conventional Workflow in Oral Rehabilitations: Current Status. Appl. Sci. 2022, 12, 3710. [Google Scholar] [CrossRef]
- Kühnisch, J.; Meyer, O.; Hesenius, M.; Hickel, R.; Gruhn, V. Caries Detection on Intraoral Images Using Artificial Intelligence. J. Dent. Res. 2022, 101, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Ba-Hattab, R.; Barhom, N.; Osman, S.A.A.; Naceur, I.; Odeh, A.; Asad, A.; Al-Najdi, S.A.R.N.; Ameri, E.; Daer, A.; Silva, R.L.B.D.; et al. Detection of Periapical Lesions on Panoramic Radiographs Using Deep Learning. Appl. Sci. 2023, 13, 1516. [Google Scholar] [CrossRef]
- Krois, J.; Ekert, T.; Meinhold, L.; Golla, T.; Kharbot, B.; Wittemeier, A.; Dörfer, C.; Schwendicke, F. Deep learning for the radiographic detection of periodontal bone loss. Sci. Rep. 2019, 9, 8495. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Inamoto, K.; Shibata, N.; Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral. Radiol. 2020, 36, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Poedjiastoeti, W.; Suebnukarn, S. Application of Convolutional Neural Network in the Diagnosis of Jaw Tumors. Healthc. Inform. Res. 2018, 24, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Aubreville, M.; Knipfer, C.; Oetter, N.; Jaremenko, C.; Rodner, E.; Denzler, J.; Bohr, C.; Neumann, H.; Stelzle, F.; Maier, A. Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity Using Deep Learning. Sci. Rep. 2017, 7, 11979. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Kim, S.; Kim, H.J.; Jeong, H.O.; Lee, J.; Jang, J.; Joo, J.Y.; Shin, Y.; Kang, J.; Park, A.K.; et al. Prediction of Chronic Periodontitis Severity Using Machine Learning Models Based on Salivary Bacterial Copy Number. Front. Cell. Infect. Microbiol. 2020, 10, 571515. [Google Scholar] [CrossRef] [PubMed]
- Thanathornwong, B. Bayesian-Based Decision Support System for Assessing the Needs for Orthodontic Treatment. Healthc. Inform. Res. 2018, 24, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Lee, C.; Karaer, O.; Ban, S.; Mine, A.; Imazato, S. Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI. J. Dent. Res. 2019, 98, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.K.; Kim, T.W. New approach for the diagnosis of extractions with neural network machine learning. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, M.; Dai, N.; Ma, H.; Li, L.; Fiorenza, L.; Sun, Y.; Li, Y. DCPR-GAN: Dental Crown Prosthesis Restoration Using Two-Stage Generative Adversarial Networks. IEEE J. Biomed. Health Inform. 2022, 26, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Peng, M.; Li, Q.; Wang, Y. Evaluation of a Novel Computer Color Matching System Based on the Improved Back-Propagation Neural Network Model. J. Prosthodont. 2018, 27, 775–783. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes, A.R.G. Artificial Intelligence in Planning Oral Rehabilitations: Current Status. Appl. Sci. 2024, 14, 4093. https://doi.org/10.3390/app14104093
Cortes ARG. Artificial Intelligence in Planning Oral Rehabilitations: Current Status. Applied Sciences. 2024; 14(10):4093. https://doi.org/10.3390/app14104093
Chicago/Turabian StyleCortes, Arthur Rodriguez Gonzalez. 2024. "Artificial Intelligence in Planning Oral Rehabilitations: Current Status" Applied Sciences 14, no. 10: 4093. https://doi.org/10.3390/app14104093
APA StyleCortes, A. R. G. (2024). Artificial Intelligence in Planning Oral Rehabilitations: Current Status. Applied Sciences, 14(10), 4093. https://doi.org/10.3390/app14104093