A Novel, Soft, Cable-Driven Parallel Robot for Minimally Invasive Surgeries Based on Folded Pouch Actuators
Abstract
:1. Introduction
2. Robot System Components and Fabrication
2.1. Design Considerations
2.2. Folded Pouch Actuator
2.3. Planar CDPRs Driven by Folded Actuators
2.4. The Design of the Robot for MISs
2.5. Robot Kinematics
2.6. Robot Manufacturing
3. Methods and Results
3.1. Actuator Characteristics
3.2. Robot Deployment
3.3. Robot Workspace
3.4. Scaffold Stiffness Test
3.5. Repeatability and Hysteresis Test
3.6. The Force Exertion of the End-Effector
3.7. Simulated Surgical Tasks
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeung, B.P.M.; Chiu, P.W.Y. Application of robotics in gastrointestinal endoscopy: A review. World J. Gastroenterol. 2016, 22, 1811. [Google Scholar] [CrossRef]
- Tada, N.; Sumiyama, K. Robotic Platforms for Therapeutic Flexible Endoscopy: A Literature Review. Diagnostics 2024, 14, 595. [Google Scholar] [CrossRef] [PubMed]
- Gifari, M.W.; Naghibi, H.; Stramigioli, S.; Abayazid, M. A review on recent advances in soft surgical robots for endoscopic applications. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e2010. [Google Scholar] [CrossRef]
- Runciman, M.; Darzi, A.; Mylonas, G.P. Soft robotics in minimally invasive surgery. Soft Robot. 2019, 6, 423–443. [Google Scholar] [CrossRef]
- Zhang, D. Parallel Robotic Machine Tools; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Khalifa, A.; Fanni, M.; Mohamed, A.M.; Miyashita, T. Development of a new 3-DOF parallel manipulator for minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2018, 14, e1901. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, X.; Wang, C.; Zhang, B.; Shang, W.; Lin, Z.; Duan, L.; Wu, Z.; Fujie, M.G. System Design of A Dual-Arm Surgical Robot for Single Port Access Surgery. In Proceedings of the 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR), Shenyang, China, 24–27 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 349–354. [Google Scholar]
- Li, C.; Gu, X.; Xiao, X.; Lim, C.M.; Ren, H. A robotic system with multichannel flexible parallel manipulators for single port access surgery. IEEE Trans. Ind. Inform. 2018, 15, 1678–1687. [Google Scholar] [CrossRef]
- Orekhov, A.L.; Black, C.B.; Till, J.; Chung, S.; Rucker, D.C. Analysis and validation of a teleoperated surgical parallel continuum manipulator. IEEE Robot. Autom. Lett. 2016, 1, 828–835. [Google Scholar] [CrossRef]
- Pott, A. Cable-Driven Parallel Robots; Bruckmann, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 119–134. [Google Scholar]
- Mylonas, G.P.; Vitiello, V.; Cundy, T.P.; Darzi, A.; Yang, G.Z. CYCLOPS: A versatile robotic tool for bimanual single-access and natural-orifice endoscopic surgery. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2436–2442. [Google Scholar]
- Runciman, M.; Avery, J.; Zhao, M.; Darzi, A.; Mylonas, G.P. Deployable, variable stiffness, cable driven robot for minimally invasive surgery. Front. Robot. AI 2020, 6, 141. [Google Scholar] [CrossRef] [PubMed]
- Runciman, M.; Avery, J.; Darzi, A.; Mylonas, G. Open Loop Position Control of Soft Hydraulic Actuators for Minimally Invasive Surgery. Appl. Sci. 2021, 11, 7391. [Google Scholar] [CrossRef]
- Niiyama, R.; Rus, D.; Kim, S. Pouch motors: Printable/inflatable soft actuators for robotics. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 6332–6337. [Google Scholar]
- Kwon, J.; Yoon, S.J.; Park, Y.L. Flat inflatable artificial muscles with large stroke and adjustable force–length relations. IEEE Trans. Robot. 2020, 36, 743–756. [Google Scholar] [CrossRef]
- Xie, D.; Liu, J.; Zuo, S. Pneumatic artificial muscle with large stroke based on a contraction ratio amplification mechanism and self-contained sensing. IEEE Robot. Autom. Lett. 2021, 6, 8599–8606. [Google Scholar] [CrossRef]
- Oh, N.; Park, Y.J.; Lee, S.; Lee, H.; Rodrigue, H. Design of paired pouch motors for robotic applications. Adv. Mater. Technol. 2019, 4, 1800414. [Google Scholar] [CrossRef]
- Jang, J.H.; Jamil, B.; Moon, Y.; Coutinho, A.; Park, G.; Rodrigue, H. Design of Gusseted Pouch Motors for Improved Soft Pneumatic Actuation. In IEEE/ASME Transactions on Mechatronics; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Yang, H.D.; Greczek, B.T.; Asbeck, A.T. Modeling and analysis of a high-displacement pneumatic artificial muscle with integrated sensing. Front. Robot. AI 2019, 5, 136. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.D.; Cooper, M.; Akbas, T.; Schumm, L.; Orzel, D.; Walsh, C.J. A soft inflatable wearable robot for hip abductor assistance: Design and preliminary assessment. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 692–699. [Google Scholar]
- Chung, J.; Heimgartner, R.; O’Neill, C.T.; Phipps, N.S.; Walsh, C.J. Exoboot, a soft inflatable robotic boot to assist ankle during walking: Design, characterization and preliminary tests. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (biorob), Enschede, The Netherlands, 26–29 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 509–516. [Google Scholar]
- O’Neill, C.T.; McCann, C.M.; Hohimer, C.J.; Bertoldi, K.; Walsh, C.J. Unfolding textile-based pneumatic actuators for wearable applications. Soft Robot. 2022, 9, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Chen, F.; Wang, D.; Zhang, Y.; Han, D.; Wang, T.; Gu, G. Design, modeling, and evaluation of fabric-based pneumatic actuators for soft wearable assistive gloves. Soft Robot. 2020, 7, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Coutinho, A.; Rodrigue, H. Manufacturing and Design of Inflatable Kirigami Actuators. IEEE Robot. Autom. Lett. 2022, 8, 25–32. [Google Scholar] [CrossRef]
- Yang, D.; Feng, M.; Gu, G. High-stroke, High-Output-Force, Fabric-Lattice Artificial Muscles for Soft Robots. Adv. Mater. 2023, 36, 2306928. [Google Scholar] [CrossRef]
- Feng, M.; Yang, D.; Ren, L.; Wei, G.; Gu, G. X-crossing pneumatic artificial muscles. Sci. Adv. 2023, 9, eadi7133. [Google Scholar] [CrossRef] [PubMed]
- Alazmani, A.; Hood, A.; Jayne, D.; Neville, A.; Culmer, P. Quantitative assessment of colorectal morphology: Implications for robotic colonoscopy. Med. Eng. Phys. 2016, 38, 148–154. [Google Scholar] [CrossRef]
- Repici, A.; Hassan, C.D.P.P.D.; Pessoa, D.D.P.; Pagano, N.; Arezzo, A.; Zullo, A.; Lorenzetti, R.; Marmo, R. Efficacy and safety of endoscopic submucosal dissection for colorectal neoplasia: A systematic review. Endoscopy 2012, 44, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Ranzani, T.; Ciuti, G.; Tortora, G.; Arezzo, A.; Arolfo, S.; Morino, M.; Menciassi, A. A novel device for measuring forces in endoluminal procedures. Int. J. Adv. Robot. Syst. 2015, 12, 116. [Google Scholar] [CrossRef]
- Gouttefarde, M.; Merlet, J.P.; Daney, D. Wrench-feasible workspace of parallel cable-driven mechanisms. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Avery, J.; Runciman, M.; Darzi, A.; Mylonas, G.P. Shape sensing of variable stiffness soft robots using electrical impedance tomography. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9066–9072. [Google Scholar]
Maximum | Mean | RMSE | |
---|---|---|---|
Error X/mm | 1.1311 | 0.2661 | 0.3219 |
Error Y/mm | 0.8929 | 0.1918 | 0.2279 |
Error Z/mm | 0.4326 | 0.0818 | 0.0993 |
Absolute error/mm | 1.3551 | 0.3645 | 0.4186 |
Circle Diameter (mm) | 29 | 36 | 43 | 50 |
---|---|---|---|---|
Position hysteresis (mm) | 0.6553 | 1.065 | 2.388 | 2.070 |
Angle hysteresis (°) | 0.5143 | 0.8359 | 1.874 | 1.624 |
Direction | +X | -X | +Y | -Y | +Z | -Z |
---|---|---|---|---|---|---|
Force/N | 0.17 | 0.13 | 0.27 | 0.17 | 1.43 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Li, X.; Runciman, M.; Avery, J.; Zhou, Z.; Sun, Z.; Mylonas, G. A Novel, Soft, Cable-Driven Parallel Robot for Minimally Invasive Surgeries Based on Folded Pouch Actuators. Appl. Sci. 2024, 14, 4095. https://doi.org/10.3390/app14104095
Yang J, Li X, Runciman M, Avery J, Zhou Z, Sun Z, Mylonas G. A Novel, Soft, Cable-Driven Parallel Robot for Minimally Invasive Surgeries Based on Folded Pouch Actuators. Applied Sciences. 2024; 14(10):4095. https://doi.org/10.3390/app14104095
Chicago/Turabian StyleYang, Jianlin, Xinxin Li, Mark Runciman, James Avery, Zhangxi Zhou, Zhijun Sun, and George Mylonas. 2024. "A Novel, Soft, Cable-Driven Parallel Robot for Minimally Invasive Surgeries Based on Folded Pouch Actuators" Applied Sciences 14, no. 10: 4095. https://doi.org/10.3390/app14104095
APA StyleYang, J., Li, X., Runciman, M., Avery, J., Zhou, Z., Sun, Z., & Mylonas, G. (2024). A Novel, Soft, Cable-Driven Parallel Robot for Minimally Invasive Surgeries Based on Folded Pouch Actuators. Applied Sciences, 14(10), 4095. https://doi.org/10.3390/app14104095