Design and Experiment of a Passive Vibration Isolator for Small Unmanned Aerial Vehicles
Abstract
:1. Introduction
1.1. Research Background
1.2. Research Trends in Vibration Isolation Devices
2. Design of the Vibration Isolator and Test of Rubber Stiffness
2.1. Design of Vibration Isolator
2.2. Comparative Verification of Vibration Isolator Stiffness through Experiment and FEM Analysis
3. Simulation of the Drone’s First Natural Frequency Using a Fixed-Fixed Beam: Numerical and FEM Analysis
3.1. Drone Ground Vibration Test
3.2. Comparative Analysis between Fixed-Fixed Beam Numerical Analysis and FEM Analysis
3.3. FEM Analysis of a Fixed-Fixed Beam including Vibration Isolator
4. Vibration Shaker Experiment: Analysis of Damping Characteristic
4.1. Random Vibration Test
4.2. Comparative Analysis of FEM Analysis and Random Vibration Test
4.3. Analysis of Damping Characteristic of Vibration Isolators
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Battsengel, G.; Geetha, S.; Jeon, J. Analysis of technological trends and technological portfolio of unmanned aerial vehicle. J. Open Innov. Technol. Mark. Complex. 2020, 6, 48. [Google Scholar] [CrossRef]
- Eisenbeiss, H. A Mini Unmanned Aerial Vehicle (UAV): System overview and image acquisition. Int. Workshop Process. Vis. Using High Resolut. Imag. 2004, 36, 1–7. [Google Scholar]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned Aerial Vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef] [PubMed]
- Booysen, R.; Jackisch, R.; Lorenz, S.; Zimmermann, R.; Kirsch, M.; Nex, P.A.M.; Gloaguen, R. Detection of REEs with lightweight UAV-based hyperspectral imaging. Sci. Rep. 2020, 10, 17450. [Google Scholar] [CrossRef] [PubMed]
- Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sens. 2021, 13, 1204. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Raja Segaran, R.; Reid, I.; Terauds, A.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef]
- Fu, J.; Fan, C.; Yu, C.; Liu, G.; Luo, H. Vibration reduction design and test of UAV load radar. Int. J. Aerosp. Eng. 2022, 2022, 4186303. [Google Scholar] [CrossRef]
- Fu, J.; Liu, G.; Fan, C.; Liu, Z.; Luo, H. Design and experimental study on vibration reduction of an UAV LIDAR using rubber material. Actuators 2022, 11, 345. [Google Scholar] [CrossRef]
- Congressional Research Service. Available online: https://crsreports.congress.gov/product/details?prodcode=R47067 (accessed on 25 January 2024).
- Shin, Y.H.; Kim, D.; Son, S.; Ham, J.W.; Oh, K.Y. Vibration isolation of a surveillance system equipped in a drone with mode decoupling. Appl. Sci. 2021, 11, 1961. [Google Scholar] [CrossRef]
- Google Patents. Available online: https://patents.google.com/patent/US20170264796A1/en?oq=US20170264796 (accessed on 11 October 2022).
- Google Patents. Available online: https://patents.google.com/patent/US20200307826A1/en?oq=US20200307826 (accessed on 11 January 2023).
- Dong, C.; Yuan, C.; Wang, L.; Liu, W.; Bai, X.; Yan, X. Tribological properties of water-lubricated rubber materials after modification by MoS2 nanoparticles. Sci. Rep. 2016, 6, 35023. [Google Scholar] [CrossRef]
- Xu, C.; Chi, M.R.; Dai, L.C.; Guo, Z.T. Calculation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures. Shock. Vib. 2020, 2020, 8140782. [Google Scholar] [CrossRef]
- Meadwell, J.; Paxman-Clarke, L.; Terris, D.; Ford, P. In search of a performing seal: Rethinking the design of tight-fitting respiratory protective equipment facepieces for users with facial hair. Saf. Health Work 2019, 10, 275–304. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Collette, C. Active vibration isolation system for drone cameras. In Proceedings of the 14th International Conference on Vibration Problems, Crete, Greece, 1–4 September 2019; Volume 2, pp. 1067–1084. [Google Scholar] [CrossRef]
Component No. | Designation | Material | Weight |
---|---|---|---|
① | Upper plate | AL6061 | 0.062 kg |
② | Vibration isolator Bracket | AL6061 | 0.022 × 2 kg |
③ | Damping unit | CR-Rubber | 0.0013 × 12 kg |
④ | Equipment plate | AL6061 | 0.073 kg |
⑤ | Lower plate | AL6061 | 0.1 kg |
Hardness | Displacement at 1 kg (mm) | Displacement at 2 kg (mm) | Displacement at 3 kg (mm) | Displacement at 4 kg (mm) | Calculated Stiffness (N/m) |
---|---|---|---|---|---|
30 | 0.45 | 0.96 | 1.41 | 1.72 | 1796 |
50 | 0.36 | 0.64 | 0.92 | 1.21 | 2902 |
70 | 0.19 | 0.37 | 0.54 | 0.72 | 4652 |
Load (kg) | Experiment Displacement (mm) | Static Structural Analysis Displacement (mm) | Error (%) |
---|---|---|---|
0.5 | 0.260 | 0.265 | 1.8 |
1 | 0.476 | 0.486 | 2.0 |
1.5 | 0.704 | 0.727 | 3.1 |
2 | 0.942 | 0.987 | 4.5 |
Category | Value |
---|---|
Frame weight | 13.9 kg |
Type | Octocopter |
Wheelbase | 1200 mm |
Motor rotation [RPM] | 2487–4981 |
Motor rotation [Hz] | 41.45–83.01 |
Load (kg) | Numerical Analysis (Hz) | FEM Analysis (Hz) | Error (%) |
---|---|---|---|
0.5 | 20.62 | 21.50 | 4.0 |
1.0 | 15.57 | 15.74 | 1.1 |
1.5 | 13.02 | 13.00 | 0.1 |
1.75 | 12.14 | 12.08 | 0.5 |
2.0 | 11.42 | 11.33 | 0.8 |
2.25 | 10.81 | 10.70 | 1.0 |
2.5 | 10.29 | 10.17 | 1.2 |
3.0 | 9.44 | 9.31 | 1.4 |
Mass | Category | Hardness of 30 | Hardness of 50 | Hardness of 70 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
First Natural Frequency | Section 1 | Section 2 | First Natural Frequency | Section 1 | Section 2 | First Natural Frequency | Section 1 | Section 2 | ||
1.7 kg | FEM Analysis | 9.4 Hz | 50.2 Hz | 71.3 Hz | 10.7 Hz | 58.1 Hz | 79.9 Hz | 11.0 Hz | 64.1 Hz | 96.2 Hz |
Random vibration test | 9.2 Hz | 49.6 Hz | 70.8 Hz | 10.4 Hz | 57.6 Hz | 80.4 Hz | 11.2 Hz | 65.6 Hz | 91.6 Hz | |
Error Rate | 2.6% | 1.2% | 0.7% | 3.0% | 0.8% | 0.6% | 1.4% | 2.3% | 5.0% | |
2.0 kg | FEM Analysis | 9.1 Hz | 49.5 Hz | 71.9 Hz | 10.21 Hz | 57.5 Hz | 79.9 Hz | 11.0 Hz | 64.8 Hz | 85.2 Hz |
Random vibration test | 9.2 Hz | 49.2 Hz | 70.0 Hz | 10.4 Hz | 57.2 Hz | 80.0 Hz | 11.2 Hz | 65.2 Hz | 90.8 Hz | |
Error Rate | 1.0% | 0.6% | 2.6% | 1.8% | 0.5% | 0.1% | 1.1% | 0.6% | 6.5% |
Sensor Location | Magnitude | ||||||
---|---|---|---|---|---|---|---|
Hardness of 30 | Hardness of 50 | Hardness of 70 | |||||
Section 1 | Section 2 | Section 1 | Section 2 | Section 1 | Section 2 | ||
Random vibration | S1 | 7.02 | 14.36 | 8.84 | 12.90 | 7.07 | 10.47 |
S2 | −6.48 | −8.62 | −4.77 | −11.20 | −6.48 | −16.10 | |
Decibel reduction | 13.50 | 22.98 | 13.61 | 24.1 | 13.55 | 26.57 |
Section | Hardness of 30 | Hardness of 50 | Hardness of 70 | |
---|---|---|---|---|
Random vibration test | Section 1 | 22.39 | 22.96 | 22.65 |
Section 2 | 198.61 | 527.04 | 453.94 |
Section | Damping Ratio of 30 | Damping Ratio of 50 | Damping Ratio of 70 | |
---|---|---|---|---|
Random vibration test | Section 1 | 2.2% | 1.8% | 1.8% |
Section 2 | 1.9% | 1.8% | 1.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.-H.; Park, H.-S.; Seo, S.-W.; Kwag, D.-G. Design and Experiment of a Passive Vibration Isolator for Small Unmanned Aerial Vehicles. Appl. Sci. 2024, 14, 4113. https://doi.org/10.3390/app14104113
Kang C-H, Park H-S, Seo S-W, Kwag D-G. Design and Experiment of a Passive Vibration Isolator for Small Unmanned Aerial Vehicles. Applied Sciences. 2024; 14(10):4113. https://doi.org/10.3390/app14104113
Chicago/Turabian StyleKang, Chan-Hwi, Hun-Suh Park, Seong-Weon Seo, and Dong-Gi Kwag. 2024. "Design and Experiment of a Passive Vibration Isolator for Small Unmanned Aerial Vehicles" Applied Sciences 14, no. 10: 4113. https://doi.org/10.3390/app14104113
APA StyleKang, C. -H., Park, H. -S., Seo, S. -W., & Kwag, D. -G. (2024). Design and Experiment of a Passive Vibration Isolator for Small Unmanned Aerial Vehicles. Applied Sciences, 14(10), 4113. https://doi.org/10.3390/app14104113