Bayes-Optimized Adaptive Growing Neural Gas Method for Online Anomaly Detection of Industrial Streaming Data
Abstract
:1. Introduction
2. Related Work
2.1. Incremental Learning
2.2. Incremental Anomaly Detection
2.3. Highlights
3. Methodology
3.1. Algorithm of Original GNG
Algorithm 1: The original Growing Neural Gas (GNG) |
|
3.2. Insertion Strategy of New Neurons
3.3. Adjustment Strategy of Learning Rate
3.4. Optimization of Hyperparameters
4. BOA-GNG-Based Anomaly Detection of Streaming Data
Algorithm 2: The learning process of BOA-GNG |
;
;
Delete the neurons, which become isolated and ;
|
Algorithm 3: The hyperparameter optimization of BOA-GNG via Bayesian |
BOA-GNG. train (train set);
,
|
5. Validation of the Proposed Method
5.1. Datasets
5.2. Performance Metrics
5.3. The Improvement Effect of BOA-GNG
5.4. Comparison Experiments
5.5. Ablation Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fritzke, B. A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. 1995, 7, 625–632. [Google Scholar]
- Frezza-Buet, H. Following non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas network. Neurocomputing 2008, 71, 1191–1202. [Google Scholar] [CrossRef]
- Xiang, Z.; Zhu, J. Network anomaly detection with improved self-organizing incremental neural network. Comput. Eng. Appl. 2014, 50, 88–91. [Google Scholar]
- Ren, H.; Guo, C.; Yang, R.; Wang, S. Fault diagnosis of electric rudder based on self-organizing differential hybrid biogeography algorithm optimized neural network. Measurement 2023, 208, 112355. [Google Scholar] [CrossRef]
- Masuyama, N.; Amako, N.; Yamada, Y.; Nojima, Y.; Ishibuchi, H. Adaptive resonance theory-based topological clustering with a divisive hierarchical structure capable of continual learning. IEEE Access 2022, 10, 68042–68056. [Google Scholar] [CrossRef]
- Zheng, S.; Lan, F.; Castellani, M. A competitive learning scheme for deep neural network pattern classifier training. Appl. Soft Comput. 2023, 146, 110662. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Zhang, Y.; Du, Y. Analysis of local macroeconomic early-warning model based on competitive neural network. J. Math. 2022, 2022, 7880652. [Google Scholar] [CrossRef]
- Vanguri, N.; Pazhanirajan, S.; Kumar, T. Competitive feedback particle swarm optimization enabled deep recurrent neural network with technical indicators for forecasting stock trends. Int. J. Intell. Robot. Appl. 2023, 7, 385–405. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, J.; Lee, B. Ultrafast local outlier detection from a data stream with stationary region skipping. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 1181–1191. [Google Scholar]
- Van, D.; Tinne, T.; Tolias, A. Three types of incremental learning. Nat. Mach. Intell. 2022, 4, 1185–1197. [Google Scholar]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. (CSUR) 2021, 54, 38. [Google Scholar] [CrossRef]
- Andrew, C.; Syed, A.; Des, M. Autoencoder and incremental clustering-enabled anomaly detection. Electronics 2023, 12, 1970. [Google Scholar] [CrossRef]
- Bigdeli, E.; Mohammadi, M.; Raahemi, B.; Matwin, S. Incremental anomaly detection using two-layer cluster-based structure. Inf. Sci. Int. J. 2018, 429, 315–331. [Google Scholar] [CrossRef]
- Gokcesu, K.; Neyshabouri, M.; Gokcesu, H.; Kozat, S.S. Sequential outlier detection based on incremental decision trees. IEEE Trans. Signal Process. 2018, 67, 993–1005. [Google Scholar] [CrossRef]
- Nawaratne, R.; Alahakoon, D.; Silva, D.; Yu, X. Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Trans. Ind. Inform. 2020, 16, 393–402. [Google Scholar] [CrossRef]
- Agarwal, R.; Nagpal, T.; Roy, D. A Novel Anomaly Detection for Streaming Data using LSTM Autoencoders. Int. J. Recent Technol. Eng. 2021, 10, 233–241. [Google Scholar]
- Fahn, C.; Kao, C.; Wu, M.; Chueh, H.E. SOINN-based abnormal trajectory detection for efficient video condensation. Comput. Syst. Sci. Eng. 2022, 42, 451–463. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Peng, X.; Yang, D. A novel algorithm for the fault diagnosis of a redundant inertial measurement unit. IEEE Access 2020, 8, 46080–46091. [Google Scholar] [CrossRef]
- Mahmoudabadi, A.; Rafsanjani, M.; Javidi, M. Online one pass clustering of data streams based on growing neural gas and fuzzy inference systems. Expert Syst. 2021, 38, e12736. [Google Scholar] [CrossRef]
- Song, L.; Zheng, T.; Wang, J.; Guo, L. An improvement growing neural gas method online anomaly detection of aerospace payloads. Soft Comput. 2020, 24, 11393–11405. [Google Scholar] [CrossRef]
- Martinetz, T.; Berkovich, S.; Schulten, K. Neural-gas network for vector quantization and its application to timeseries prediction. IEEE Trans. Neural Netw. 1993, 4, 558–569. [Google Scholar] [CrossRef]
- Hebb, D.O. The Organization of Behavior; Wiley: New York, NY, USA, 1988; pp. 43–54. [Google Scholar]
- Fritzke, B. A self-organizing network that can follow nonstationary distributions. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 1997; pp. 613–618. [Google Scholar]
- Marsland, S.; Shapiro, J.; Nehmzow, U. A self-organizing network that grows when required. Neural Netw. 2002, 15, 1041–1058. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liu, H.; Harada, T. Online growing neural gas for anomaly detection in changing surveillance scenes. Pattern Recognit. 2017, 64, 187–201. [Google Scholar] [CrossRef]
- Mohamed-Rafik, B.; Slawomir, N.; Payberah, A. An adaptive algorithm for anomaly and novelty detection in evolving data streams. Data Min. Knowl. Discov. 2018, 32, 1597–1633. [Google Scholar]
- Zhang, Q.; Wu, H.; Tao, J.; Ding, W.; Zhang, J.; Li, J. Fault Diagnosis of Rolling Bearing Based on CNN with Attention Mechanism and Dynamic Learning Rate. In Proceedings of the 2021 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD), Nanjing, China, 21–23 October 2021; pp. 1–7. [Google Scholar]
- Liu, X.; Ma, T.; Gao, W.; Zhu, X.; Wen, Y.; Pan, W. Outlier Detection Using Machine Learning Algorithms Integrated with Bayesian Optimization. In Proceedings of the 2022 International Conference on Algorithms, Data Mining, and Information Technology (ADMIT), Xi’an, China, 23–25 September 2022; pp. 160–165. [Google Scholar]
- Zhou, A.; Zhu, Q.; Zhang, J.; Meng, K. Ship Intrusion Detection Technology Based on Bayesian Optimization Algorithm and XGBoost. In Proceedings of the 2023 3rd International Conference on Electrical Engineering and Control Science (IC2ECS), Hangzhou, China, 29–31 December 2023; pp. 1647–1652. [Google Scholar]
- Sarhan, M.; Kulatilleke, G.; Lo, W.W.; Layeghy, S.; Portmann, M. DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly Detection. In Proceedings of the 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW), Bangalore, India, 1–4 May 2023; pp. 1–7. [Google Scholar]
Parameter | Parameter Meaning |
---|---|
The set of all neurons | |
The set of edge-connecting neurons | |
The weight of neuron | |
The learning rate of winning neuron | |
The learning rate of neuron in the neighborhood of winning neuron | |
The cumulative error of neuron | |
The set of neurons that connect to the neuron | |
The maximum of edge’s age | |
The current time | |
The step size of inserting neurons |
Parameters | The Meaning of the Parameters |
---|---|
Limitations of the number of nodes | |
The threshold for the deletion of isolated neurons | |
The winning times of neuron | |
Gaussian process | |
The search scope of hyperparameters | |
The optimal hyperparameters set | |
The process hyperparameters set | |
The optimal objective function | |
The process objective function | |
The set of () |
Dataset | Train Set Samples | Test Set Samples | Dimension |
---|---|---|---|
Shuttle | 44,686 | 1778 | 9 |
KDD-CUP99 HTTP | 80,000 | 2100 | 27 |
Satellite | 4100 | 1000 | 36 |
SMAP | 70,000 | 7000 | 26 |
MSL | 15,000 | 1500 | 56 |
Payload Dataset | 80,000 | 16,662 | 65 |
Datasets | Criteria | GNG [1] | GWR [24] | GNG-I [20] | SOINN [17] | K-Means | Proposed Method |
---|---|---|---|---|---|---|---|
Shuttle dataset | p | 0.9762 | 0.9976 | 0.9988 | 0.9836 | 0.9976 | 0.9988 |
r | 0.9818 | 0.9613 | 0.9601 | 0.9692 | 0.9612 | 0.9901 | |
f | 0.9790 | 0.9791 | 0.9791 | 0.9700 | 0.9791 | 0.9944 | |
HTTP dataset | p | 0.9918 | 0.8072 | 0.9944 | 0.7100 | 0.8400 | 0.9959 |
r | 0.9990 | 0.7608 | 0.9979 | 0.9189 | 0.7197 | 0.9990 | |
f | 0.9954 | 0.7833 | 0.9962 | 0.8011 | 0.7752 | 0.9972 | |
Satellite dataset | p | 0.9789 | 0.9597 | 0.9687 | 0.9800 | 0.8734 | 0.9802 |
r | 0.9514 | 0.9005 | 0.9708 | 0.7935 | 0.5070 | 0.9632 | |
f | 0.9649 | 0.9292 | 0.9698 | 0.8769 | 0.6416 | 0.9716 | |
SMAP dataset | p | 0.9852 | 0.7924 | 1.0000 | 0.8483 | 0.8160 | 1.0000 |
r | 0.9912 | 0.9683 | 0.9939 | 1.0000 | 0.8394 | 0.9942 | |
f | 0.9877 | 0.8716 | 0.9969 | 0.9179 | 0.8275 | 0.9971 | |
MSL dataset | p | 0.8662 | 1.0000 | 0.8662 | 0.6033 | 0.9200 | 1.0000 |
r | 0.9706 | 0.9529 | 0.9706 | 0.9592 | 0.9918 | 0.9807 | |
f | 0.9769 | 0.9751 | 0.9769 | 0.7407 | 0.9545 | 0.9902 | |
Payload dataset | p | 0.8907 | 0.8149 | 0.9571 | 0.8150 | 0.9996 | 0.9997 |
r | 0.7594 | 0.9996 | 0.9987 | 1.0000 | 0.7744 | 0.9949 | |
f | 0.8198 | 0.8979 | 0.9775 | 0.8981 | 0.8727 | 0.9973 |
Datasets | Data Stream | p | r | f |
---|---|---|---|---|
Shuttle dataset | Stream 1 | 1.0000 | 1.0000 | 1.0000 |
Stream 2 | 1.0000 | 1.0000 | 1.0000 | |
Stream 3 | 1.0000 | 0.9978 | 0.9989 | |
HTTP dataset | Stream 1 | 1.0000 | 1.0000 | 1.0000 |
Stream 2 | 1.0000 | 0.9104 | 0.9531 | |
Stream 3 | 1.0000 | 0.9538 | 0.9764 | |
Satellite dataset | Stream 1 | 1.0000 | 0.9970 | 0.9985 |
Stream 2 | 1.0000 | 0.9955 | 0.9977 | |
Stream 3 | 0.9613 | 0.9946 | 0.9777 | |
SMAP dataset | Stream 1 | 1.0000 | 0.9858 | 0.9928 |
Stream 2 | 1.0000 | 0.9858 | 0.9928 | |
Stream 3 | 1.0000 | 0.9846 | 0.9922 | |
MSL dataset | Stream 1 | 1.0000 | 0.9911 | 0.9955 |
Stream 2 | 1.0000 | 0.9673 | 0.9834 | |
Stream 3 | 1.0000 | 0.9673 | 0.9834 | |
Payload dataset | Stream 1 | 1.0000 | 0.9984 | 0.9992 |
Stream 2 | 1.0000 | 0.9940 | 0.9970 | |
Stream 3 | 0.9973 | 0.9946 | 0.9959 |
Datasets | GNG [1] | GWR [24] | GNG-I [20] | Proposed Method | ||||
---|---|---|---|---|---|---|---|---|
v1 (dot/s) | v2 (dot/s) | v1 (dot/s) | v2 (dot/s) | v1 (dot/s) | v2 (dot/s) | v1 (dot/s) | v2 (dot/s) | |
Shuttle | 497.40 | 19,772.57 | 357.49 | 15,303.42 | 3796.60 | 186,191.67 | 3822.58 | 203,118.18 |
KDD-CUP99 | 453.26 | 21,276.60 | 1079.77 | 6467.26 | 479.47 | 22,727.27 | 459.61 | 22,222.22 |
Satellite | 2204.30 | 9761.90 | 334.97 | 3504.27 | 1822.22 | 9318.18 | 2469.88 | 12,058.82 |
SMAP | 2987.62 | 4888.26 | 315.71 | 3564.15 | 2687.14 | 5728.31 | 3111.11 | 5988.02 |
MSL | 2504.17 | 4213.48 | 304.63 | 3170.53 | 2008.03 | 4065.04 | 2369.67 | 4043.13 |
Payload dataset | 276.72 | 2002.50 | 143.63 | 1714.53 | 482.83 | 4212.74 | 535.98 | 4364.43 |
Algorithms | p | r | f |
---|---|---|---|
BOA-GNGFLR | 0.8159 | 0.9951 | 0.8966 |
BOA-GNGSLR | 0.8667 | 0.9951 | 0.9264 |
BOA-GNGFIS | 0.9997 | 0.9834 | 0.9915 |
BOA-GNG | 0.9997 | 0.9949 | 0.9973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Guo, L.; Gao, S.; Li, M.; Hao, C.; Li, X.; Song, L. Bayes-Optimized Adaptive Growing Neural Gas Method for Online Anomaly Detection of Industrial Streaming Data. Appl. Sci. 2024, 14, 4139. https://doi.org/10.3390/app14104139
Zhang J, Guo L, Gao S, Li M, Hao C, Li X, Song L. Bayes-Optimized Adaptive Growing Neural Gas Method for Online Anomaly Detection of Industrial Streaming Data. Applied Sciences. 2024; 14(10):4139. https://doi.org/10.3390/app14104139
Chicago/Turabian StyleZhang, Jian, Lili Guo, Song Gao, Mingwei Li, Chuanzhu Hao, Xuzhi Li, and Lei Song. 2024. "Bayes-Optimized Adaptive Growing Neural Gas Method for Online Anomaly Detection of Industrial Streaming Data" Applied Sciences 14, no. 10: 4139. https://doi.org/10.3390/app14104139
APA StyleZhang, J., Guo, L., Gao, S., Li, M., Hao, C., Li, X., & Song, L. (2024). Bayes-Optimized Adaptive Growing Neural Gas Method for Online Anomaly Detection of Industrial Streaming Data. Applied Sciences, 14(10), 4139. https://doi.org/10.3390/app14104139