Accurate Classification of Tunnel Lining Cracks Using Lightweight ShuffleNetV2-1.0-SE Model with DCGAN-Based Data Augmentation and Transfer Learning
Abstract
:1. Introduction
- (1)
- A novel dataset for classification was constructed by manually taking field photographs of tunnel lining cracks under various interference backgrounds.
- (2)
- A publicly available concrete dataset with a small sample size was used to pretrain DCGAN, resulting in higher quality synthetic images of tunnel lining cracks.
- (3)
- The ShuffleNetV2-1.0 network was improved by incorporating a squeeze–excitation (SE) attention module, which improved its crack feature extraction and balanced its accuracy and speed.
2. Materials and Methods
2.1. Dataset Production
2.1.1. Basic Dataset Production
2.1.2. Data Augmentation Using IDG Methods
2.1.3. Data Augmentation Using DCGAN
2.1.4. Dataset Overview
2.2. ShuffleNetV2-1.0-SE Model
2.2.1. ShuffleNetV2 Architecture
2.2.2. SE Attention Mechanism
2.2.3. ShuffleNetV2-1.0-SE Architecture
2.3. Transfer Learning
3. Experiments and Configuration Detail
3.1. Experimental Environment for DCGAN Training
3.2. Experimental Environment for LCNN Training
3.3. Evaluation Metrics
Image | Prediction | ||
---|---|---|---|
Crack | Background | ||
Label | Crack | TP | FN |
Background | FP | TN |
4. Results and Discussion
4.1. Dataset Augmentation Using DCGAN
4.2. LCNN Performance Comparison
Model | Transfer Learning | Parameters (Millions) | Complexity (GFLOPs) | Weight (MB) | Accuracy (%) | TP (%) | TN (%) |
---|---|---|---|---|---|---|---|
MobileNetV1 | Yes | 4.25 | 1.16 | 12.50 | 92.79 | 92.22 | 93.37 |
MobileNetV2 | Yes | 2.26 | 0.59 | 7.47 | 91.83 | 90.2 | 93.59 |
MobileNetV3-Small | Yes | 1.53 | 0.12 | 6.32 | 92.31 | 90.74 | 94.23 |
MobileNetV3-Large | Yes | 4.23 | 0.45 | 16.70 | 93.08 | 92.42 | 93.85 |
ShuffleNetV2-0.5 | Yes | 0.35 | 0.04 | 1.77 | 91.73 | 90.64 | 92.89 |
ShuffleNetV2-1.0 | Yes | 1.27 | 0.15 | 5.29 | 93.27 | 92.94 | 93.6 |
No | 91.06 | 90.51 | 91.62 | ||||
ShuffleNetV2-1.0-SE | Yes | 1.45 | 0.17 | 6.15 | 94.23 | 93.73 | 94.75 |
No | 92.12 | 91.32 | 92.94 | ||||
ShuffleNetV2-1.5 | Yes | 2.5 | 0.30 | 10.00 | 93.85 | 93.35 | 94.36 |
ShuffleNetV2-2.0 | Yes | 5.38 | 0.59 | 20.90 | 93.17 | 93.09 | 93.26 |
EfficieNet-b0 | Yes | 4.05 | 0.80 | 15.90 | 92.31 | 90.89 | 94.02 |
EfficieNet-b1 | Yes | 6.58 | 1.29 | 25.70 | 93.27 | 91.82 | 94.82 |
EfficieNet-b2 | Yes | 7.77 | 1.79 | 30.30 | 93.37 | 92.63 | 94.13 |
4.3. Comparison of Different Augmentation Methods
4.4. Experimental Results of DCGAN Augmentation
4.4.1. Performance Comparison of Different LCNNs
Model | Transfer Learning | Parameters (Millions) | Complexity (GFLOPs) | Weight (MB) | Accuracy (%) | TP (%) | TN (%) |
---|---|---|---|---|---|---|---|
MobileNetV1 | Yes | 4.25 | 1.16 | 12.50 | 97.66 | 97.45 | 97.88 |
MobileNetV2 | Yes | 2.26 | 0.59 | 7.47 | 97.44 | 97.31 | 97.56 |
MobileNetV3_Small | Yes | 1.53 | 0.12 | 6.32 | 97.44 | 97.50 | 97.38 |
MobileNetV3_Large | Yes | 4.23 | 0.45 | 16.70 | 97.47 | 97.50 | 97.44 |
ShuffleNetV2_0.5 | Yes | 0.35 | 0.04 | 1.77 | 95.45 | 96.52 | 94.29 |
ShuffleNetV2_1.0 | Yes | 1.27 | 0.15 | 5.29 | 96.70 | 97.46 | 95.96 |
No | 95.61 | 97.21 | 94.11 | ||||
ShuffleNetV2_1.0-SE | Yes | 1.45 | 0.17 | 6.15 | 98.14 | 98.02 | 97.95 |
No | 97.24 | 97.49 | 97.00 | ||||
ShuffleNetV2_1.5 | Yes | 2.5 | 0.30 | 10.00 | 97.85 | 97.76 | 97.94 |
ShuffleNetV2_2.0 | Yes | 5.38 | 0.59 | 20.90 | 97.95 | 98.01 | 97.51 |
EfficieNet_b0 | Yes | 4.05 | 0.80 | 15.90 | 96.79 | 97.22 | 96.38 |
EfficieNet_b1 | Yes | 6.58 | 1.29 | 25.70 | 97.79 | 97.82 | 97.76 |
EfficieNet_b2 | Yes | 7.77 | 1.79 | 30.30 | 97.98 | 98.07 | 97.89 |
4.4.2. Comparison of Loss Curves for Different Datasets and Different Conditions
4.4.3. Analysis of the Impact of SE Modules and Transfer Learning on Network Performance
4.5. Visualization of Augmentation Using DCGAN with Transfer Learning
4.5.1. Effect of DCGAN Augmentation on Network Performance
4.5.2. Generalization Performance Study
5. Conclusions
- (1)
- Transfer learning on a small-scale dataset enhances the image generation quality of DCGAN, the classification accuracy of LCNN for crack images and the detection performance of LCNN for true positive crack images.
- (2)
- The SE attention mechanism improves the crack feature extraction of ShuffleNetV2-1.0. An accuracy improvement from 94.23% to 98.14% was achieved with 1.45 million parameters and 017G floating-point computation using transfer learning and DCGAN data augmentation.
- (3)
- ShuffleNetV2-1.0-SE shows better generalization on the public dataset after being trained with the DCGAN-augmented dataset, demonstrating the effectiveness of the proposed data augmentation method, which combines transfer learning and DCGAN.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, H.W.; Li, Q.T.; Zhang, D.M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel. Tunn. Undergr. Space Technol. 2018, 77, 166–176. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Y. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects. Comput.-Aided Civil Infrastruct. Eng. 2018, 33, 638–654. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, J.; Hong, Z.; Lu, W.; Yin, J.; Zou, L.; Shen, X. Image-based concrete crack detection in tunnels using deep fully convolutional networks. Construct. Build. Mater. 2020, 234, 117367. [Google Scholar] [CrossRef]
- Koch, C.; Georgieva, K.; Kasireddy, V.V.; Akinci, B.; Fieguth, P. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inform. 2015, 29, 196–210. [Google Scholar] [CrossRef]
- Sony, S.; Dunphy, K.; Sadhu, A.; Capretz, M.A.M. A systematic review of convolutional neural network-based structural condition assessment techniques. Eng. Struct. 2021, 226, 111347. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Chen, Z.; Li, C.Y. A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network. Eng. Comput. 2023, 39, 1771–1789. [Google Scholar] [CrossRef]
- Tian, Y. Artificial intelligence image recognition method based on convolutional neural network algorithm. IEEE Access 2020, 8, 125731–125744. [Google Scholar] [CrossRef]
- Guo, F.; Qian, Y.; Liu, J.; Yu, H. Pavement crack detection based on transformer network. Autom. Constr. 2023, 145, 104646. [Google Scholar] [CrossRef]
- Liu, Y.; Cho, S.; Spencer, B.F., Jr.; Fan, J. Automated assessment of cracks on concrete surfaces using adaptive digital image processing. Smart Struct. Syst. 2014, 14, 719–741. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst. 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, Y.; Yao, J.; Lu, X.; Xie, R.; Li, L. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 2019, 338, 139–153. [Google Scholar] [CrossRef]
- Song, W.; Jia, G.; Zhu, H.; Jia, D.; Gao, L. Automated Pavement Crack Damage Detection Using Deep Multiscale Convolutional Features. J. Adv. Transp. 2020, 2020, 6412562. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road Crack Detection Using Deep Convolutional Neural Network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Gao, Y.; Mosalam, K.M. Deep transfer learning for image-based structural damage recognition. Comput.-Aided Civil Infrastruct. Eng. 2018, 33, 748–768. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Z.; Chen, L.; Hu, X.; Tian, Y.; Zhai, C.; Wang, L.; Huang, X. Structural damage-causing concrete cracking detection based on a deep-learning method. Constr. Build. Mater. 2022, 337, 127562. [Google Scholar] [CrossRef]
- Andrew, G.; Menglong, Z.J.M. Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 Ocober–2 November 2019; pp. 1314–1324. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. Shufflenet v2: Practical Guidelines for Efficient CNN Architecture Design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. Int. Conf. Mach. Learn. 2019, 97, 6105–6114. [Google Scholar]
- Li, G.; Liu, T.; Fang, Z.; Shen, Q.; Ali, J. Automatic bridge crack detection using boundary refinement based on real-time segmentation network. Struct. Control Health Monit. 2022, 29, e2991. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Q.; Han, Q.; Peng, B.; Wang, L.; Gu, X.; Wang, D. MobileCrack: Object Classification in Asphalt Pavements Using an Adaptive Lightweight Deep Learning. J. Transp. Eng. Part B-Pavements 2021, 147, 04020092. [Google Scholar] [CrossRef]
- Chen, L.; Yao, H.; Fu, J.; Ng, C.T. The classification and localization of crack using lightweight convolutional neural network with CBAM. Eng. Struct. 2023, 275, 115291. [Google Scholar] [CrossRef]
- Ni, F.; He, Z.; Jiang, S.; Wang, W.; Zhang, J. A Generative adversarial learning strategy for enhanced lightweight crack delineation networks. Adv. Eng. Inform. 2022, 52, 101575. [Google Scholar] [CrossRef]
- Xu, B.Q.; Liu, C. Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples. Measurement 2022, 196, 111219. [Google Scholar] [CrossRef]
- Zhong, J.; Huyan, J.; Zhang, W.; Cheng, H.; Zhang, J.; Tong, Z.; Jiang, X.; Huang, B. A deeper generative adversarial network for grooved cement concrete pavement crack detection. Eng. Appl. Artif. Intell. 2023, 119, 105808. [Google Scholar] [CrossRef]
- Pei, L.; Sun, Z.; Xiao, L.; Li, W.; Sun, J.; Zhang, H. Virtual generation of pavement crack images based on improved deep convolutional generative adversarial network. Eng. Appl. Artif. Intell. 2021, 104, 104376. [Google Scholar] [CrossRef]
- Jin, T.; Ye, X.; Li, Z. Establishment and evaluation of conditional GAN-based image dataset for semantic segmentation of structural cracks. Eng. Struct. 2023, 285, 116058. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, J.; Gong, C.; Wu, W. Automatic tunnel lining crack detection via deep learning with generative adversarial network-based data augmentation. Undergr. Space 2023, 9, 140–154. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Özgenel, Ç.F.; Sorguç, A.G. Performance Comparison of Pretrained Convolutional Neural Networks on Crack Detection in Buildings. In Proceedings of the International Symposium on Automation and Robotics in Construction, Berlin, Germany, 20–25 July 2018; pp. 1–8. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
Dataset | Numbers | Augmentation | |
---|---|---|---|
Crack | Background | ||
A | 2600 | 2600 | |
B1 | 5200 | 5200 | IDG |
B2 | 5200 | 5200 | DCGAN |
C | 7800 | 7800 | DCGAN |
Layer | Output Size | KSize | Stride | Repeat | Output Channels |
---|---|---|---|---|---|
Image | 224 × 224 | 3 | |||
Conv1 Maxpool | 112 × 112 56 × 56 | 3 × 3 3 × 3 | 2 2 | 1 | 24 |
Stage2 | 28 × 28 28 × 28 | 2 1 | 1 3 | 116 | |
Stage3 | 14 × 14 14 × 14 | 2 1 | 1 7 | 232 | |
Stage4 | 7 × 7 7 × 7 | 2 1 | 1 3 | 464 | |
Conv5 | 7 × 7 | 1 × 1 | 1 | 1 | 1024 |
GlobalPool | 1 × 1 | 7 × 7 | |||
FC | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Song, Y.; Yang, A.; Lv, K.; Jiang, H.; Dong, C. Accurate Classification of Tunnel Lining Cracks Using Lightweight ShuffleNetV2-1.0-SE Model with DCGAN-Based Data Augmentation and Transfer Learning. Appl. Sci. 2024, 14, 4142. https://doi.org/10.3390/app14104142
Zhao N, Song Y, Yang A, Lv K, Jiang H, Dong C. Accurate Classification of Tunnel Lining Cracks Using Lightweight ShuffleNetV2-1.0-SE Model with DCGAN-Based Data Augmentation and Transfer Learning. Applied Sciences. 2024; 14(10):4142. https://doi.org/10.3390/app14104142
Chicago/Turabian StyleZhao, Ningyu, Yi Song, Ailin Yang, Kangping Lv, Haifei Jiang, and Chao Dong. 2024. "Accurate Classification of Tunnel Lining Cracks Using Lightweight ShuffleNetV2-1.0-SE Model with DCGAN-Based Data Augmentation and Transfer Learning" Applied Sciences 14, no. 10: 4142. https://doi.org/10.3390/app14104142
APA StyleZhao, N., Song, Y., Yang, A., Lv, K., Jiang, H., & Dong, C. (2024). Accurate Classification of Tunnel Lining Cracks Using Lightweight ShuffleNetV2-1.0-SE Model with DCGAN-Based Data Augmentation and Transfer Learning. Applied Sciences, 14(10), 4142. https://doi.org/10.3390/app14104142