An Overview of Tools and Challenges for Safety Evaluation and Exposure Assessment in Industry 4.0
Abstract
:1. Introduction
2. Airborne Hazards in the Workplace
3. Industry 4.0 Safety and Exposure Assessment Tools
3.1. Industry 4.0 Overview
3.2. Occupational Safety Technologies
3.3. Tools for Exposure Assessment and Control
3.4. Limitations and Challenges
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Labour Office. Exposure to Hazardous Chemicals at Work and Resulting Health Impacts: A Global Review; International Labour Office: Geneva, Switzerland, 2021. [Google Scholar]
- Nezis, I.; Biskos, G.; Eleftheriadis, K.; Kalantzi, O.-I. Particulate Matter and Health Effects in Offices—A Review. Build. Environ. 2019, 156, 62–73. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Damilos, S.; Saliakas, S.; Kokkinopoulos, I.; Karayannis, P.; Karamitrou, M.; Trompeta, A.-F.; Charitidis, C.; Koumoulos, E.P. Occupational Safety Analysis for COVID-Instigated Repurposed Manufacturing Lines: Use of Nanomaterials in Injection Moulding. Polymers 2022, 14, 2418. [Google Scholar] [CrossRef] [PubMed]
- Paoli, L.; Guttová, A.; Grassi, A.; Lackovičová, A.; Senko, D.; Loppi, S. Biological Effects of Airborne Pollutants Released during Cement Production Assessed with Lichens (SW Slovakia). Ecol. Indic. 2014, 40, 127–135. [Google Scholar] [CrossRef]
- Lee, M.; Jung, S.; Do, G.; Yang, Y.; Kim, J.; Yoon, C. Measurement of Airborne Particles and Volatile Organic Compounds Produced during the Heat Treatment Process in Manufacturing Welding Materials. Saf. Health Work 2023, 14, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Barnes, H.; Glaspole, I. Occupational Interstitial Lung Diseases. Immunol. Allergy Clin. North Am. 2023, 43, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Seaman, D.M.; Meyer, C.A.; Kanne, J.P. Occupational and Environmental Lung Disease. Clin. Chest Med. 2015, 36, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Aoun, A.; Ilinca, A.; Ghandour, M.; Ibrahim, H. A Review of Industry 4.0 Characteristics and Challenges, with Potential Improvements Using Blockchain Technology. Comput. Ind. Eng. 2021, 162, 107746. [Google Scholar] [CrossRef]
- MarketsandMarkets. Smart Factory Market Size, Share, Industry Report, Revenue Trends and Growth Drivers. Available online: https://www.marketsandmarkets.com/Market-Reports/smart-factory-market-1227.html (accessed on 8 April 2024).
- Leso, V.; Fontana, L.; Iavicoli, I. The Occupational Health and Safety Dimension of Industry 4.0. Med. Lav. 2018, 110, 327–338. [Google Scholar] [CrossRef]
- Zorzenon, R.; Lizarelli, F.L.; Moura, D.B.A.d.A. What Is the Potential Impact of Industry 4.0 on Health and Safety at Work? Saf. Sci. 2022, 153, 105802. [Google Scholar] [CrossRef]
- Musarat, M.A.; Alaloul, W.S.; Irfan, M.; Sreenivasan, P.; Rabbani, M.B.A. Health and Safety Improvement through Industrial Revolution 4.0: Malaysian Construction Industry Case. Sustainability 2023, 15, 201. [Google Scholar] [CrossRef]
- Hajifar, S.; Sun, H.; Megahed, F.M.; Jones-Farmer, L.A.; Rashedi, E.; Cavuoto, L.A. A Forecasting Framework for Predicting Perceived Fatigue: Using Time Series Methods to Forecast Ratings of Perceived Exertion with Features from Wearable Sensors. Appl. Ergon. 2021, 90, 103262. [Google Scholar] [CrossRef]
- Awolusi, I.; Nnaji, C.; Marks, E.; Hallowell, M. Enhancing Construction Safety Monitoring through the Application of Internet of Things and Wearable Sensing Devices: A Review. In Computing in Civil Engineering 2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 530–538. [Google Scholar] [CrossRef]
- US EPA. Particulate Matter (PM) Basics. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 8 April 2024).
- Saleh, Y.; Antherieu, S.; Dusautoir, R.; Alleman, L.Y.; Sotty, J.; De Sousa, C.; Platel, A.; Perdrix, E.; Riffault, V.; Fronval, I.; et al. Exposure to Atmospheric Ultrafine Particles Induces Severe Lung Inflammatory Response and Tissue Remodeling in Mice. Int. J. Environ. Res. Public Health 2019, 16, 1210. [Google Scholar] [CrossRef]
- Marval, J.; Tronville, P. Ultrafine Particles: A Review about Their Health Effects, Presence, Generation, and Measurement in Indoor Environments. Build. Environ. 2022, 216, 108992. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation of 10 June 2022 on the Definition of Nanomaterial (Text with EEA Relevance) 2022/C 229/01; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, J.-H.; Kim, Y.-D.; Seo, J.H. Ultrafine Diesel Exhaust Particles Induce Apoptosis of Oligodendrocytes by Increasing Intracellular Reactive Oxygen Species through NADPH Oxidase Activation. Antioxidants 2022, 11, 1031. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. ENV/JM/MONO(2015)19 Harmonized Tiered Approach to Measure and Assess the Potential Exposure to Airborne Emissions of Engineered Nano-Objects and Their Agglomerates and Aggregates at Workplaces; Organisation for Economic Co-Operation and Development: Paris, France, 2015. [Google Scholar]
- Saliakas, S.; Damilos, S.; Karamitrou, M.; Trompeta, A.-F.; Milickovic, T.K.; Charitidis, C.; Koumoulos, E.P. Integrating Exposure Assessment and Process Hazard Analysis: The Nano-Enabled 3D Printing Filament Extrusion Case. Polymers 2023, 15, 2836. [Google Scholar] [CrossRef]
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol Exposure Assessment in the Workplace: The Past, Present and Recent Advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, R.; Kizhisseri, M.I.; Mayanaik, S.N.; Mohamed, M.M. Bioaerosol Assessment in Indoor and Outdoor Environments: A Case Study from India. Sci. Rep. 2023, 13, 18066. [Google Scholar] [CrossRef]
- Eduarda, W.; Heederik, D. Methods for Quantitative Assessment of Airborne Levels of Noninfectious Microorganisms in Highly Contaminated Work Environments. Am. Ind. Hyg. Assoc. J. 1998, 59, 113–127. [Google Scholar] [CrossRef]
- Loomis, D.; Dzhambov, A.M.; Momen, N.C.; Chartres, N.; Descatha, A.; Guha, N.; Kang, S.-K.; Modenese, A.; Morgan, R.L.; Ahn, S.; et al. The Effect of Occupational Exposure to Welding Fumes on Trachea, Bronchus and Lung Cancer: A Systematic Review and Meta-Analysis from the WHO/ILO Joint Estimates of the Work-Related Burden of Disease and Injury. Environ. Int. 2022, 170, 107565. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, H.M.; Dagostim, G.P.; da Silva, A.M.; Tavares, P.; da Rosa, L.A.Z.C.; de Andrade, V.M. Occupational Risk Assessment of Paint Industry Workers. Indian J. Occup. Environ. Med. 2011, 15, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-F.; Kuo, Y.-C.; Wang, L.-C. Long-Term Metal Fume Exposure Assessment of Workers in a Shipbuilding Factory. Sci. Rep. 2022, 12, 790. [Google Scholar] [CrossRef] [PubMed]
- Li, A.J.; Pal, V.K.; Kannan, K. A Review of Environmental Occurrence, Toxicity, Biotransformation and Biomonitoring of Volatile Organic Compounds. Environ. Chem. Ecotoxicol. 2021, 3, 91–116. [Google Scholar] [CrossRef]
- Davis, A.Y.; Zhang, Q.; Wong, J.P.S.; Weber, R.J.; Black, M.S. Characterization of Volatile Organic Compound Emissions from Consumer Level Material Extrusion 3D Printers. Build. Environ. 2019, 160, 106209. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; Bowers, L.N.; Knepp, A.K.; Luxton, T.P.; Peloquin, D.M.; Baumann, E.J.; Ham, J.E.; Wells, J.R.; Johnson, A.R.; LeBouf, R.F.; et al. Particle and Vapor Emissions from Vat Polymerization Desktop-Scale 3-Dimensional Printers. J. Occup. Environ. Hyg. 2019, 16, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Davies, R. Industry 4.0: Digitalisation for Productivity and Growth; Think Tank; European Parliament: Brussels, Belgium, 2015. [Google Scholar]
- Sharma, A.; Singh, D. Evolution of Industrial Revolutions: A Review. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 66–73. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things Is a Revolutionary Approach for Future Technology Enhancement: A Review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Aravinth, S.S.; Krishnan, A.S.R.; Ranganathan, R.; Sasikala, M.; Kumar, M.S.; Thiyagarajan, R. Cloud Computing—Everything as a Cloud Service in Industry 4.0. In Digital Transformation: Industry 4.0 to Society 5.0; Kumar, A., Sagar, S., Thangamuthu, P., Balamurugan, B., Eds.; Springer Nature: Singapore, 2024; pp. 103–121. ISBN 978-981-9981-18-2. [Google Scholar]
- Gandomi, A.H.; Chen, F.; Abualigah, L. Big Data Analytics Using Artificial Intelligence. Electronics 2023, 12, 957. [Google Scholar] [CrossRef]
- Brnabic, A.; Hess, L.M. Systematic Literature Review of Machine Learning Methods Used in the Analysis of Real-World Data for Patient-Provider Decision Making. BMC Med. Inform. Decis. Mak. 2021, 21, 54. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.-F.; Yang, Y.; Wang, X.-C.; Zhang, X.-P. Systematic Review of Digital Twin Technology and Applications. Vis. Comput. Ind. Biomed. Art 2023, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Mashaly, M. Connecting the Twins: A Review on Digital Twin Technology & Its Networking Requirements. Procedia Comput. Sci. 2021, 184, 299–305. [Google Scholar] [CrossRef]
- Guo, J.; Lv, Z. Application of Digital Twins in Multiple Fields. Multimed. Tools Appl. 2022, 81, 26941–26967. [Google Scholar] [CrossRef] [PubMed]
- Bellalouna, F. New Approach for Industrial Training Using Virtual Reality Technology. Procedia CIRP 2020, 93, 262–267. [Google Scholar] [CrossRef]
- Machała, S.; Chamier-Gliszczyński, N.; Królikowski, T. Application of AR/VR Technology in Industry 4.0. Procedia Comput. Sci. 2022, 207, 2990–2998. [Google Scholar] [CrossRef]
- Damiani, L.; Demartini, M.; Guizzi, G.; Revetria, R.; Tonelli, F. Augmented and Virtual Reality Applications in Industrial Systems: A Qualitative Review towards the Industry 4.0 Era. IFAC PapersOnLine 2018, 51, 624–630. [Google Scholar] [CrossRef]
- Periša, M.; Sente, R.E.; Cvitić, I.; Kolarovszki, P. Application of Innovative Smart Wearable Device in Industry 4.0. In Proceedings of the 3rd EAI International Conference on Management of Manufacturing Systems, Dubrovnik, Croatia, 6–8 November 2018. [Google Scholar]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Ul Haq, M.I. 3D Printing—A Review of Processes, Materials and Applications in Industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Bahrin, M.A.K.; Othman, M.F.; Azli, N.H.N.; Talib, M.F. Industry 4.0: A Review on Industrial Automation and Robotic. J. Teknol. 2016, 78, 137–143. [Google Scholar] [CrossRef]
- Zio, E.; Miqueles, L. Digital Twins in Safety Analysis, Risk Assessment and Emergency Management. Reliab. Eng. Syst. Saf. 2024, 246, 110040. [Google Scholar] [CrossRef]
- Li, M.; Milojević, A.; Handroos, H. Robotics in Manufacturing—The Past and the Present. In Technical, Economic and Societal Effects of Manufacturing 4.0: Automation, Adaption and Manufacturing in Finland and Beyond; Collan, M., Michelsen, K.-E., Eds.; Springer: Cham, Switzerland, 2020; pp. 85–95. ISBN 978-3-030-46103-4. [Google Scholar]
- Sun, S.; Zheng, X.; Villalba-Díez, J.; Ordieres-Meré, J. Indoor Air-Quality Data-Monitoring System: Long-Term Monitoring Benefits. Sensors 2019, 19, 4157. [Google Scholar] [CrossRef] [PubMed]
- Albert Raj, A.; Vijila, J. Design of Indoor Air Quality Monitoring System to Ensure a Healthy Universe. In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12 September 2020; pp. 1123–1127. [Google Scholar]
- Erol, M. Occupational Health and Work Safety Systems in Compliance with Industry 4.0: Research Directions. IJEBEG 2019, 11, 119–133. [Google Scholar] [CrossRef]
- Pasquale, V.D.; De Simone, V.; Radano, M.; Miranda, S. Wearable Devices for Health and Safety in Production Systems: A Literature Review. IFAC PapersOnLine 2022, 55, 341–346. [Google Scholar] [CrossRef]
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef] [PubMed]
- Wixted, F.; Shevlin, M.; O’Sullivan, L.W. Distress and Worry as Mediators in the Relationship between Psychosocial Risks and Upper Body Musculoskeletal Complaints in Highly Automated Manufacturing. Ergonomics 2018, 61, 1079–1093. [Google Scholar] [CrossRef] [PubMed]
- Scorgie, D.; Feng, Z.; Paes, D.; Parisi, F.; Yiu, T.W.; Lovreglio, R. Virtual Reality for Safety Training: A Systematic Literature Review and Meta-Analysis. Saf. Sci. 2024, 171, 106372. [Google Scholar] [CrossRef]
- Erten, B.; Oral, B.; Yakut, M.Z. The Role of Virtual and Augmented Reality in Occupational Health and Safety Training of Employees in PV Power Systems and Evaluation with a Sustainability Perspective. J. Clean. Prod. 2022, 379, 134499. [Google Scholar] [CrossRef]
- Sabeti, S.; Shoghli, O.; Baharani, M.; Tabkhi, H. Toward AI-Enabled Augmented Reality to Enhance the Safety of Highway Work Zones: Feasibility, Requirements, and Challenges. Adv. Eng. Inform. 2021, 50, 101429. [Google Scholar] [CrossRef]
- ISO 45001:2018; Occupational Health and Safety Management Systems—Requirements with Guidance for Use. International Organization for Standardization: Geneva, Switzerland, 2018.
- Bourou, S.; Maniatis, A.; Kontopoulos, D.; Karkazis, P.A. Smart Detection System of Safety Hazards in Industry 5.0. Telecom 2024, 5, 1–20. [Google Scholar] [CrossRef]
- Rasouli, S.; Alipouri, Y.; Chamanzad, S. Smart Personal Protective Equipment (PPE) for Construction Safety: A Literature Review. Saf. Sci. 2024, 170, 106368. [Google Scholar] [CrossRef]
- Arana-Landín, G.; Laskurain-Iturbe, I.; Iturrate, M.; Landeta-Manzano, B. Assessing the Influence of Industry 4.0 Technologies on Occupational Health and Safety. Heliyon 2023, 9, e13720. [Google Scholar] [CrossRef] [PubMed]
- Felknor, S.A.; Streit, J.M.K.; Edwards, N.T.; Howard, J. Four Futures for Occupational Safety and Health. Int. J. Environ. Res. Public Health 2023, 20, 4333. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Gutiérrez, M.J.; Suarez-Fernandez de Miranda, S.; Aguayo-González, F. Occupational Safety and Health 5.0—A Model for Multilevel Strategic Deployment Aligned with the Sustainable Development Goals of Agenda 2030. Sustainability 2022, 14, 6741. [Google Scholar] [CrossRef]
- Fanti, G.; Spinazzè, A.; Borghi, F.; Rovelli, S.; Campagnolo, D.; Keller, M.; Borghi, A.; Cattaneo, A.; Cauda, E.; Cavallo, D.M. Evolution and Applications of Recent Sensing Technology for Occupational Risk Assessment: A Rapid Review of the Literature. Sensors 2022, 22, 4841. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Alonso, D.; Pérez-Arribas, L.V.; Manzoor, S.; Cáceres, J.O. Statistical Tools for Air Pollution Assessment: Multivariate and Spatial Analysis Studies in the Madrid Region. J. Anal. Methods Chem. 2019, 2019, e9753927. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.Y.; Miao, Y.; Chau, R.L.T.; Hernandez, M.; Lee, P.K.H. Artificial Intelligence-Based Prediction of Indoor Bioaerosol Concentrations from Indoor Air Quality Sensor Data. Environ. Int. 2023, 174, 107900. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.K.; Kang, D.H.; Lee, W.; Kang, H.W. Airflow Pattern Control Using Artificial Intelligence for Effective Removal of Indoor Airborne Hazardous Materials. Build. Environ. 2021, 204, 108148. [Google Scholar] [CrossRef]
- Topping, D.; Bannan, T.J.; Coe, H.; Evans, J.; Jay, C.; Murabito, E.; Robinson, N. Digital Twins of Urban Air Quality: Opportunities and Challenges. Front. Sustain. Cities 2021, 3, 786563. [Google Scholar] [CrossRef]
- Pochwatko, G.; Jędrzejewski, Z.; Kopeć, W.; Skorupska, K.; Masłyk, R.; Jaskulska, A.; Świdrak, J. Representation of Air Pollution in Augmented Reality: Tools for Population–Wide Behavioral Change. In Digital Interaction and Machine Intelligence; Biele, C., Kacprzyk, J., Kopeć, W., Owsiński, J.W., Romanowski, A., Sikorski, M., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 150–158. [Google Scholar]
- Kačerová, I.; Kubr, J.; Hořejší, P.; Kleinová, J. Ergonomic Design of a Workplace Using Virtual Reality and a Motion Capture Suit. Appl. Sci. 2022, 12, 2150. [Google Scholar] [CrossRef]
- Patel, V.; Chesmore, A.; Legner, C.M.; Pandey, S. Trends in Workplace Wearable Technologies and Connected-Worker Solutions for Next-Generation Occupational Safety, Health, and Productivity. Adv. Intell. Syst. 2022, 4, 2100099. [Google Scholar] [CrossRef]
- Ye, S.; Ziemann, M.; Wenig, M. Personal Air Pollution Exposure Assessment Using Wearable Sensors. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar]
- Popescu, S.M.; Mansoor, S.; Wani, O.A.; Kumar, S.S.; Sharma, V.; Sharma, A.; Arya, V.M.; Kirkham, M.B.; Hou, D.; Bolan, N.; et al. Artificial Intelligence and IoT Driven Technologies for Environmental Pollution Monitoring and Management. Front. Environ. Sci. 2024, 12, 1336088. [Google Scholar] [CrossRef]
- Grant-Jacob, J.A.; Mills, B. Deep Learning in Airborne Particulate Matter Sensing: A Review. J. Phys. Commun. 2022, 6, 122001. [Google Scholar] [CrossRef]
- Imani, M. Particulate Matter (PM2.5 and PM10) Generation Map Using MODIS Level-1 Satellite Images and Deep Neural Network. J. Environ. Manag. 2021, 281, 111888. [Google Scholar] [CrossRef] [PubMed]
- Missala, T. Paradigms and Safety Requirements for a New Generation of Workplace Equipment. Int. J. Occup. Saf. Ergon. 2014, 20, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Lundin, R.M.; Yeap, Y.; Menkes, D.B. Adverse Effects of Virtual and Augmented Reality Interventions in Psychiatry: Systematic Review. JMIR Ment. Health 2023, 10, e43240. [Google Scholar] [CrossRef] [PubMed]
- Trentesaux, D.; Caillaud, E. Ethical Stakes of Industry 4.0. IFAC PapersOnLine 2020, 53, 17002–17007. [Google Scholar] [CrossRef]
- Peckham, J.B. The Ethical Implications of 4IR. J. Ethics Entrep. Technol. 2021, 1, 30–42. [Google Scholar] [CrossRef]
- Berrah, L.; Cliville, V.; Trentesaux, D.; Chapel, C. Industrial Performance: An Evolution Incorporating Ethics in the Context of Industry 4.0. Sustainability 2021, 13, 9209. [Google Scholar] [CrossRef]
- Rahanu, H.; Georgiadou, E.; Siakas, K.; Ross, M.; Berki, E. Ethical Issues Invoked by Industry 4.0. In Systems, Software and Services Process Improvement; Yilmaz, M., Clarke, P., Messnarz, R., Reiner, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 589–606. [Google Scholar]
- World Economic Forum. Agile Regulation for the Fourth Industrial Revolution: A Toolkit for Regulators. Available online: https://www.weforum.org/about/agile-regulation-for-the-fourth-industrial-revolution-a-toolkit-for-regulators/ (accessed on 1 May 2024).
- Kuo, C.-C.; Shyu, J.Z.; Ding, K. Industrial Revitalization via Industry 4.0—A Comparative Policy Analysis among China, Germany and the USA. Glob. Transit. 2019, 1, 3–14. [Google Scholar] [CrossRef]
- Directorate-General for Internal Policies of the Union (European Parliament); Carlberg, M.; Kreutzer, S.; Smit, J.; Moeller, C. Industry 4.0; Publications Office of the European Union: Luxembourg, 2016; ISBN 978-92-823-8815-0. [Google Scholar]
- Umar, T. Applications of Drones for Safety Inspection in the Gulf Cooperation Council Construction. Eng. Constr. Arch. Manag. 2020, 28, 2337–2360. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Iranmanesh, M.; Tseng, M.-L.; Grybauskas, A.; Stefanini, A.; Amran, A. Behind the Definition of Industry 5.0: A Systematic Review of Technologies, Principles, Components, and Values. J. Ind. Prod. Eng. 2023, 40, 432–447. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damilos, S.; Saliakas, S.; Karasavvas, D.; Koumoulos, E.P. An Overview of Tools and Challenges for Safety Evaluation and Exposure Assessment in Industry 4.0. Appl. Sci. 2024, 14, 4207. https://doi.org/10.3390/app14104207
Damilos S, Saliakas S, Karasavvas D, Koumoulos EP. An Overview of Tools and Challenges for Safety Evaluation and Exposure Assessment in Industry 4.0. Applied Sciences. 2024; 14(10):4207. https://doi.org/10.3390/app14104207
Chicago/Turabian StyleDamilos, Spyridon, Stratos Saliakas, Dimitris Karasavvas, and Elias P. Koumoulos. 2024. "An Overview of Tools and Challenges for Safety Evaluation and Exposure Assessment in Industry 4.0" Applied Sciences 14, no. 10: 4207. https://doi.org/10.3390/app14104207
APA StyleDamilos, S., Saliakas, S., Karasavvas, D., & Koumoulos, E. P. (2024). An Overview of Tools and Challenges for Safety Evaluation and Exposure Assessment in Industry 4.0. Applied Sciences, 14(10), 4207. https://doi.org/10.3390/app14104207