Characteristics and Sources of CBM Well-Produced Water in the Shouyang Block, China
Abstract
:1. Introduction
2. Geological Background
2.1. Structural Geology
2.2. Coal-Bearing Strata and Aquifers
3. Methodology
4. Results and Discussion
4.1. Characteristics of Discharge Water
4.1.1. Water Production
4.1.2. Hydrochemical Parameters
4.1.3. Hydrodynamic Field
4.2. Factors Influencing Water Production
4.2.1. Total Water Content of Coal Seam
4.2.2. Porosity
4.2.3. Groundwater Stability Index
4.2.4. Groundwater Sealing Coefficient
4.2.5. Fault Structure
4.2.6. Degree of Fracture Development
4.2.7. Sand–Mud Ratio
4.3. Analysis of the Main Influencing Factors and Classification of Water Production Types
4.4. Water Sources Analysis and Model of High Water Production
4.4.1. Water Sources
4.4.2. Model of High Water Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, J.; Elsworth, D.; Fu, X.; Liang, S.; Chen, H. Influence of water on elastic deformation of coal and its control on per-meability in coalbed methane production. J. Pet. Sci. Eng. 2022, 208, 109603. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Zheng, S.; Shu, L.; Zhang, X. How efficient coal mine methane control can benefit carbon-neutral target: Evidence from China. J. Clean. Prod. 2023, 424, 138895. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, S.; Anand, S.; Kumar, R. A review of coal bed methane production techniques and prospects in India. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Das, P.R.; Mendhe, V.A.; Kamble, A.D.; Sharma, P.; Shukla, P.; Varma, A.K. Petrographic and Geochemical Controls on Methane Genesis, Pore Fractal Attributes, and Sorption of Lower Gondwana Coal of Jharia Basin, India. ACS Omega 2021, 7, 299–324. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Chen, S.; Gui, H.; Zhao, M.; Zhao, K.; Xia, H.; Wu, C. Geochemical Characteristics and Geological Significance of Coalbed Methane in Suzhou Mining Area of the Huaibei Coalfield. ACS Omega 2024, 9, 20086–20100. [Google Scholar] [CrossRef]
- Li, Y.; Tang, D.; Xu, H.; Elsworth, D.; Meng, Y. Geological and hydrological controls on water coproduced with coalbed methane in Liulin, eastern Ordos basin, China. AAPG Bull. 2015, 99, 207–229. [Google Scholar] [CrossRef]
- Wang, B.; Wang, D.; Cao, W.; Li, G.; Hou, W.; Cui, X.; Hou, T.; Shi, M. Review of the Hydrogeological Controls on Coalbed Methane (CBM) and Development Trends. Geofluids 2021, 2021, 8298579. [Google Scholar] [CrossRef]
- Van, V.W.A. Geochemical signature of formation waters associated with coalbed methane. AAPG Bull. 2003, 87, 667–676. [Google Scholar]
- Wu, J.; Guo, C.; Sang, S.; Li, G. Geochemical Characteristics of Water Produced from Coalbed Methane Wells in the Southern Qinshui Basin and Construction of an Associated Model: Implications for Coalbed Methane Co-Production. Energies 2022, 15, 8009. [Google Scholar] [CrossRef]
- Dahm, K.G.; Guerra, K.L.; Munakata-Marr, J.; Drewes, J.E. Trends in water quality variability for coalbed methane produced water. J. Clean. Prod. 2014, 84, 840–848. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, D.; Chen, M.; Wang, B.; Sun, J.; Yu, L.; Cai, Y.; Zhao, B.; Sun, F. Gas and water performance from the full-cycle of coalbed methane enrichment-drainage-output: A case study of Daning-jixian area in the eastern margin of Ordos Basin. Energy Rep. 2023, 9, 3235–3247. [Google Scholar] [CrossRef]
- Du, F.F.; Ni, X.M.; Zhang, Y.F.; Wang, W.S.; Wang, K. Hydrological control mode and production characteristics of coalbed methane field in Shouyang Block. Coal Sci. Technol. 2023, 51, 177–188. [Google Scholar]
- Du, F.; Ni, X.; Zhang, Y.; Liu, Y.; Wang, W. Recharge water types of coalbed methane wells: Controlling effects on water yield and countermeasures. Coal Geol. Explor. 2023, 51, 74–84. [Google Scholar]
- Pashin, J.C.; McIntyre-Redden, M.R.; Mann, S.D.; Kopaska-Merkel, D.C.; Varonka, M.; Orem, W. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin. Int. J. Coal Geol. 2014, 126, 92–105. [Google Scholar] [CrossRef]
- Huo, Z. Analysis on the Difference and Main Controlling Factors of Gas-Water Productivity of CBM Straight Wells in Zhengzhuang South Qinshui Basin. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2017. [Google Scholar]
- Guo, C.; Qin, Y.; Wu, C.; Lu, L. Hydrogeological control and productivity modes of coalbed methane commingled pro-duction in multi-seam areas: A case study of the Bide–Santang Basin, western Guizhou, South China. J. Pet. Sci. Eng. 2020, 189, 107039. [Google Scholar] [CrossRef]
- Yang, G.; Tang, S.; Hu, W.; Song, Z.; Zhang, S.; Xi, Z.; Wang, K.; Yan, X. Analysis of abnormally high water production in coalbed methane vertical wells: A case study of the Shizhuangnan block in the southern Qinshui Basin, China. J. Pet. Sci. Eng. 2020, 190, 107100. [Google Scholar] [CrossRef]
- Han, J. Analysis of Influence Factors of CBM Wells in Shouyang Block. China Coalbed Methane 2018, 15, 12–16. [Google Scholar]
- Wang, Y. Influence factors of upper water-bearing sandstone on coalbed methane well productivity—Take Shouyang Area as an example. Petrochem. Technol. 2022, 29, 170–172. [Google Scholar]
- Zhang, B. CBM Well Produced Water Source Identification and Favorable Block Prediction in Shouyang Area. Coal Geol. China 2016, 28, 67–73. [Google Scholar]
- Jiang, W.; Zhang, P.; Li, D.; Li, Z.; Wang, J.; Duan, Y.; Wu, J.; Liu, N. Reservoir characteristics and gas production potential of deep coalbed methane: Insights from the no. 15 coal seam in shouyang block, Qinshui Basin, China. Unconv. Resour. 2022, 2, 12–20. [Google Scholar]
- Wang, J.; Kang, Y.; Jiang, S.; Zhang, S.; Ye, J.; Wu, J.; Zhang, B.; Guo, M. Reasons for water production difference of CBM wells in Shouyang Block, Qinshui Basin, and prediction on favorable areas. Natur. Gas Ind. 2016, 36, 52–59. [Google Scholar]
- HJ 776-2015; Water quality-Determination of 32 elements-Inductively coupled plasma optical emission spectrometry. China Environmental Science Press: Beijing, China, 2015.
- DZ/T 0064.49-2021; Methods for Analysis of Groundwater Quality-Part 49: Determination of Carbonate, Bicarbonate Ions, Hydroxy Titration. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- DZ/T 0064.50-2021; Methods for Analysis of Groundwater Quality Part 50: Determination of Chloride Argentometric Titrimetric Method. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- GB/T 11899-1989; Water Quality-Determination of Sulfate Gravimetric Method. National Bureau of Technical Supervision: Beijing, China, 1989.
- GB/T 37847-2019; General Rules for Isotope Composition Analysis by Mass Spectrometry. Standards Press of China: Beijing, China, 2019.
- Jiang, S.; Kang, Y.; Zhang, S.; Ye, J.; Zhang, B.; Wang, J.; Wu, J. Analysis on influencing factors of drainage dynamic of wells and CBM development strategy in Shizhuang block. Nat. Gas Geosci. 2016, 27, 1134–1142. [Google Scholar]
- Wang, B.; Sun, F.; Tang, D.; Zhao, Y.; Song, Z.; Tao, Y. Hydrological control rule on coalbed methane enrichment and high yield in FZ Block of Qinshui Basin. Fuel 2015, 140, 568–577. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, J.; Zhang, B.; Zhang, S.; Wang, J. Identification of aquifers influencing the drainage of coalbed methane wells in Shouyang exploration area, Qinshui Basin. J. China Coal Soc. 2016, 41, 2263–2272. [Google Scholar]
- Zhang, R. Evaluation Method Research on Coalbed Methane Reservoirs. Master’s Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Chen, X.; Wang, J.; Zhang, W.; Liu, W.; Cui, X.; Ding, A.; Ye, W.; Li, H. Water Production Forecast Method Research in Coal Seams. In Proceedings of the 2015 International Conference on Oil and Gas Field Exploration and Development, Xi’an, China, 20–21 September 2015; pp. 926–932. [Google Scholar]
- Shen, J.; Qin, Y.; Zhao, J. Maceral contribution to pore size distribution in anthracite in the south Qinshui Basin. Energy Fuels 2019, 33, 7234–7243. [Google Scholar] [CrossRef]
- Han, J. Linkage Evolution Mechanisms of Reservoir Water-Effective Stress-Permeability during CBM Production: A Case Study of 3# Coal Seam in Sihe Mine, Southern Qinshui Basin. Ph.D. Dissertation, China University of Mining and Technology, Xuzhou, China, 2022. [Google Scholar]
- Zhang, X. Water Abundance Law of Ordovician and Water Inrush Forecast in Yanzhou Mine Area. Ph.D. Dissertation, China University of Mining and Technology, Xuzhou, China, 2016. [Google Scholar]
- Wu, C.; Yang, Z.; Sun, H.; Zhang, Z.; Li, G.; Peng, H. Vertical fluid energy characteristics and orderly development suggestion in the southwest-ern region of Enhong Syncline in Yunnan. Nat. Gas Geosci. 2018, 29, 1205–1214. [Google Scholar]
- Li, Q.; Shen, J.; Hu, H.; Ji, X. Research on the Control of CBM Well Reservoir Geological Engineering Characteristics on Productivity. Geol. J. China Univ. 2023, 29, 644–656. [Google Scholar]
- Wang, K.; Tang, S.; Zhang, S.; Yang, N.; Xi, Z.; Zhang, Q.; Wang, J. Discussion on the causes of abnormally high water production of coalbed methane wells under the control of structural conditions and hydraulic fracturing. J. China Coal Soc. 2021, 46, 849–861. [Google Scholar]
- Han, L.; Shen, J.; Qu, J.; Ji, C. Characteristics of a multi-scale fracture network and its contributions to flow properties in anthracite. Energy Fuels 2021, 35, 11319–11332. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Fu, J.; Li, T. Review of fracture identification with well logs and seismic data. Prog. Geophys. 2014, 29, 1231–1242. (In Chinese) [Google Scholar]
- Li, L.; Sang, X.; Chen, X. Research and progress on fracture of low-permeability reservoir. Prog. Ceophys. 2017, 32, 2472–2484. (In Chinese) [Google Scholar]
- Li, G.; Qin, Y.; Wang, B.; Zhang, M.; Lin, Y.; Song, X.; Mi, W. Fluid seepage mechanism and permeability prediction model of multi-seam interbed coal measures. Fuel 2024, 356, 129556. [Google Scholar] [CrossRef]
- Dang, F. Analysis of Factors Influencing the Productivity of Coalbed Methane in Different Geological Units in Shizhuangnan Block, Qinshui Basin. Master’s Thesis, China University of Geosciences, Beijing, China, 2020. [Google Scholar]
- Cao, T. Geological Control of CBM Productivity Difference in Lu’an Mining Area. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2016. [Google Scholar]
- Fang, L.; Chen, B.; Nai, H.; Sano, Y.; Xu, S. Geochemical characteristics and source trace of coalbed methane co-produced water in Qinshui Basin. Nat. Gas Geosci. 2024. [Google Scholar]
- Zhao, C.H.; Shen, H.Y.; Wang, Z.H.; Liang, Y.P.; Zhao, Y.; Xie, H.; Tang, C.L. Hydrochemical and isotopic characteristics in the surface water of the Fenhe River basin and influence factors. Environ. Sci. 2022, 43, 4440–4448. [Google Scholar]
- Huang, S.; Zou, J.; Han, J.; Mao, X. Application of Hydrochemical and Gray Correlation Methods in CBM Well Produced Water Source Discrimination. Coal Geol. China 2016, 28, 58–64. [Google Scholar]
- Liu, X.; Xiang, W.; Si, B. Hydrochemical and Isotopic Characteristics in the Shallow Groundwater of the Fenhe River Basin and Indicative Significance. Environ. Sci. 2021, 42, 1739–1749. [Google Scholar]
- Chen, Y.; Zhu, S.; Xiao, S. Discussion on controlling factors of hydrogeochemistry and hydraulic connections of groundwater in different mining districts. Nat. Hazards 2019, 99, 689–704. [Google Scholar] [CrossRef]
- Zhai, J.; Zhang, S.; Tang, S. Hydrochemical characteristics of coalbed methane well in Yuwang bolck, Laochang, Yunnan province. Sci. Technol. Eng. 2021, 21, 5245–5254. [Google Scholar]
- Feng, Q.; Wu, C.; Lei, B. Coal/Rock Mechanics Features of Qinshui Basin and Fracturing Crack Control. Coal Sci. Technol. 2011, 39, 100–103. [Google Scholar]
- Zhu, X.; Liang, J.; Liu, Y.; Wang, C.; Liao, X.; Guo, G.; Lü, Y. Influencing factor and type of water production of CBM wells: Case study of Shizhuangnan block of Qinshui Basin. Nat. Gas Geosci. 2017, 28, 755–760. [Google Scholar]
- Wang, J.; Kang, Y.; Jiang, S.; Zhang, B.; Gu, J. Difference of CBM development conditions in Shouyang and Shizhuang blocks, Qinshui basin. Coal Geol. Explor. 2017, 45, 56–62. [Google Scholar]
Well | W (m3/d) | G (m3/d) | Well | W (m3/d) | G (m3/d) |
---|---|---|---|---|---|
SY01 | 1.64 | 259.97 | SY22 | 23.83 | 56.11 |
SY02 | 5.68 | 29.23 | SY23 | 5.33 | 105.53 |
SY03 | 7.02 | 170.69 | SY24 | 0.81 | 166.96 |
SY04 | 3.76 | 604.34 | SY25 | 11.78 | 71.81 |
SY05 | 20.36 | 375.06 | SY26 | 2.57 | 47.06 |
SY06 | 6.15 | 37.00 | SY27 | 6.90 | 0.00 |
SY07 | 1.98 | 243.16 | SY28 | 3.94 | 66.73 |
SY08 | 5.01 | 132.15 | SY29 | 0.87 | 63.31 |
SY09 | 15.35 | 50.36 | SY30 | 10.26 | 107.68 |
SY10 | 1.74 | 61.17 | SY31 | 0.83 | 103.25 |
SY11 | 1.22 | 521.74 | SY32 | 12.29 | 24.01 |
SY12 | 3.52 | 171.15 | SY33 | 4.97 | 23.98 |
SY13 | 10.89 | 162.59 | SY34 | 8.73 | 0.00 |
SY14 | 5.45 | 221.48 | SY35 | 6.98 | 0.00 |
SY15 | 2.62 | 51.17 | SY36 | 3.82 | 0.00 |
SY16 | 4.63 | 197.10 | SY37 | 27.00 | 0.00 |
SY17 | 36.85 | 760.57 | SY38 | 2.30 | 298.84 |
SY18 | 35.05 | 112.62 | SY39 | 6.70 | 94.55 |
SY19 | 46.21 | 10.51 | SY40 | 81.60 | 4.80 |
SY20 | 4.11 | 102.32 | SY41 | 2.40 | 13.03 |
SY21 | 2.59 | 144.91 | SY42 | 3.30 | 42.71 |
Water Sample | Ca2+ | Mg2+ | Na+ + K+ | HCO3− | CO32− | SO42− | Cl− | TDS | δ18O (‰) | δ2H (‰) | Sealing Coefficient |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg/L) | |||||||||||
SW1 | 3.03 | 0.82 | 492.03 | 970.53 | 51.24 | 2.47 | 136.78 | 1102 | - | - | 261.17 |
SW2 | 4.79 | 4.23 | 1164.79 | 759.41 | 114.68 | 4.12 | 1104.01 | 2802 | - | - | 239.18 |
SW3 | 7.75 | 2.42 | 843.75 | 1230.49 | 71.29 | 4.12 | 561.78 | 2042 | - | - | 189.45 |
SW4 | 7.40 | 1.81 | 733.40 | 937.44 | 74.39 | 3.91 | 571.55 | 1802 | - | - | 176.58 |
SW5 | 18.20 | 4.97 | 874.20 | 1098.15 | 12.40 | 3.29 | 884.19 | 2414 | - | - | 108.43 |
SW6 | 4.57 | 1.58 | 713.57 | 978.41 | 77.49 | 2.88 | 500.71 | 1762 | - | - | 251.40 |
SW7 | 5.33 | 1.61 | 603.90 | 841.34 | 63.54 | 4.74 | 376.15 | 2798 | - | - | 161.38 |
SW8 | 9.06 | 2.73 | 756.70 | 721.60 | 37.19 | 4.12 | 679.02 | 2336 | - | - | 137.93 |
SW9 | 11.50 | 4.08 | 872.50 | 1143.84 | 26.35 | 3.70 | 720.54 | 2190 | - | - | 143.32 |
SW10 | 2.76 | 0.69 | 479.76 | 951.62 | 49.59 | 4.94 | 107.47 | 1088 | - | - | 189.33 |
SW11 | 20.10 | 5.36 | 975.10 | 918.54 | 38.74 | 3.29 | 975.78 | 2450 | - | - | 101.15 |
SW12 | 20.60 | 6.77 | 1180.60 | 697.96 | 49.59 | 2.88 | 1646.25 | 5334 | - | - | 118.16 |
SW13 | 28.00 | 8.03 | 1878.00 | 876.00 | 46.49 | 4.12 | 2557.30 | 5001 | - | - | 133.44 |
SW14 | 7.57 | 2.74 | 636.57 | 1124.94 | 55.02 | 2.47 | 297.99 | 1526 | - | - | 165.46 |
SW15 | 4.09 | 1.48 | 720.09 | 926.42 | 80.59 | 2.88 | 493.39 | 1688 | - | - | 262.78 |
SW16 | 18.10 | 5.17 | 1158.10 | 1233.65 | 38.74 | 4.53 | 1130.88 | 2914 | - | - | 128.11 |
SW17 | 22.40 | 6.19 | 1352.40 | 737.35 | 40.29 | 4.94 | 1675.56 | 1086 | - | - | 113.50 |
SW18 | 13.10 | 3.93 | 983.10 | 1131.24 | 30.99 | 5.35 | 847.55 | 1952 | - | - | 133.73 |
SW19 | 27.60 | 8.69 | 1067.60 | 1060.34 | 26.35 | 3.70 | 1187.06 | 3744 | - | - | 83.55 |
SW20 | 1.83 | 0.63 | 445.98 | 721.60 | 58.89 | 1.65 | 185.63 | 3496 | - | - | 343.58 |
SW21 | 1.89 | 0.80 | 411.88 | 705.84 | 41.84 | 1.65 | 158.76 | 3170 | - | - | 303.76 |
SW22 | 1.82 | 0.50 | 502.37 | 885.45 | 77.49 | 3.29 | 188.07 | 1124 | −9.71 | −72.7 | 294.72 |
SW23 | 1.56 | 0.53 | 503.92 | 833.46 | 82.13 | 3.50 | 185.63 | 1086 | - | - | 287.14 |
SW24 | 1.61 | 0.60 | 469.05 | 811.40 | 99.18 | 2.47 | 152.66 | 1020 | −10.05 | −74.92 | 327.41 |
SW25 | 3.20 | 1.23 | 656.90 | 825.59 | 67.42 | 6.59 | 434.77 | 1474 | −8.85 | −69.73 | 180.10 |
SW26 | 3.47 | 1.40 | 721.80 | 682.21 | 69.74 | 7.00 | 630.17 | 1732 | - | - | 177.25 |
SW27 | 1.88 | 0.66 | 544.95 | 915.39 | 111.58 | 11.11 | 185.63 | 1228 | −9.35 | −71.89 | 128.76 |
SW28 | 2.41 | 0.68 | 988.90 | 839.76 | 49.59 | 6.17 | 224.71 | 1110 | 227.10 | ||
SW29 | 2.22 | 0.64 | 438.77 | 819.28 | 55.79 | 1.65 | 124.57 | 970 | −10.34 | −75.96 | 318.94 |
SW30 | 2.12 | 0.53 | 476.24 | 849.21 | 75.94 | 2.68 | 144.11 | 1050 | −9.71 | −73.13 | 289.96 |
SW31 | 3.51 | 2.24 | 1144.00 | 735.49 | 78.49 | 37.04 | 1232.20 | 3235 | - | - | 74.55 |
SW32 | 3.69 | 2.60 | 735.56 | 644.27 | 67.30 | 47.75 | 663.54 | 2168 | - | - | 39.06 |
SW33 | 2.93 | 1.26 | 498.00 | 743.00 | 39.00 | 20.98 | 269.68 | 1591 | - | - | 61.58 |
SW34 | 4.31 | 2.18 | 655.00 | 701.00 | 81.30 | 23.68 | 491.49 | 1968 | - | - | 63.92 |
SW35 | 4.18 | 1.91 | 691.00 | 807.00 | 86.50 | 27.08 | 473.40 | 2100 | - | - | 62.03 |
SW36 | 2.27 | 0.84 | 549.50 | 1117.00 | 93.10 | 2.93 | 75.74 | 1852 | - | - | 303.76 |
SW37 | 1.70 | 1.71 | 567.39 | 1010.97 | 66.79 | 35.81 | 192.58 | 1879 | - | - | 46.86 |
SW38 | 3.03 | 0.57 | 544.19 | 1146.79 | 37.11 | 20.58 | 123.41 | 1878 | - | - | 76.57 |
SW39 | 5.83 | 3.38 | 1285.08 | 602.53 | 48.91 | 25.11 | 1581.20 | 4876 | - | - | 102.50 |
SW40 | 1.74 | 1.65 | 552.03 | 649.94 | 95.32 | 27.58 | 348.93 | 1678 | - | - | 53.16 |
SW41 | 4.17 | 1.33 | 646.50 | 1154.00 | 17.60 | 1.58 | 305.21 | 1874 | - | - | 299.94 |
SW42 | 6.03 | 1.84 | 611.00 | 1023.00 | 46.90 | 1.30 | 297.35 | 1996 | - | - | 215.68 |
Well | Groundwater Stability Index | D Value | Porosity (%) | Total Water Content (10,000 m3) | Fault Fractal Dimension | Sand–Mud Ratio |
---|---|---|---|---|---|---|
SY01 | 3.75 | 1.70 | 4.20 | 1.25 | 0.10 | 0.31 |
SY02 | 3.85 | 1.75 | 4.24 | 5.01 | 0.20 | 1.20 |
SY03 | 3.94 | 1.80 | 5.25 | 2.57 | 0.20 | 1.34 |
SY04 | 3.61 | 1.74 | 4.52 | 3.90 | 0.90 | 0.63 |
SY05 | 3.66 | 1.74 | 5.42 | 2.90 | 0.78 | 1.60 |
SY06 | 4.35 | 1.75 | 4.99 | 3.35 | 0.20 | 1.05 |
SY07 | 3.96 | 1.70 | 3.40 | 2.40 | 0.83 | 0.80 |
SY08 | 3.97 | 1.80 | 4.51 | 1.86 | 0.90 | 0.42 |
SY11 | 3.71 | 1.77 | 4.11 | 2.39 | 0.79 | 0.77 |
SY12 | 4.40 | 1.78 | 4.67 | 2.11 | 0.70 | 0.81 |
SY13 | 4.28 | 1.79 | 6.14 | 3.86 | 0.80 | 2.23 |
SY15 | 3.46 | 1.79 | 4.70 | 1.59 | 0.20 | 1.04 |
SY16 | 5.00 | 1.81 | 3.40 | 1.78 | 0.30 | 0.94 |
SY17 | 3.14 | 1.84 | 6.70 | 2.09 | 0.94 | 3.40 |
SY18 | 3.50 | 1.82 | 5.70 | 1.35 | 0.81 | 3.00 |
SY19 | 3.16 | 1.82 | 10.40 | 3.60 | 0.90 | 3.12 |
SY20 | 3.31 | 1.80 | 3.00 | 0.65 | 0.70 | 0.41 |
SY21 | 3.32 | 1.77 | 5.10 | 1.19 | 0.65 | 1.52 |
SY22 | 2.40 | 1.82 | 6.87 | 3.47 | 0.74 | 4.40 |
SY24 | 3.41 | 1.62 | 4.70 | 2.12 | 0.50 | 2.50 |
SY25 | 3.54 | 1.80 | 5.40 | 1.88 | 0.50 | 3.00 |
SY29 | 3.78 | 1.68 | 4.79 | 1.20 | 0.70 | 0.54 |
SY30 | 3.71 | 1.85 | 4.99 | 5.78 | 0.80 | 2.20 |
SY31 | 4.22 | 1.67 | 3.10 | 1.30 | 0.78 | 0.32 |
SY37 | 3.30 | 1.89 | 6.00 | 0.53 | 0.80 | 1.06 |
SY38 | 3.55 | 1.63 | 4.05 | 0.54 | 0.90 | 0.09 |
SY39 | 3.52 | 1.68 | 3.30 | 1.24 | 0.80 | 2.91 |
SY41 | 3.04 | 1.62 | 6.82 | 0.38 | 0.80 | 1.26 |
Factors Influencing Average Water Production | Sand–Mud Ratio | Porosity | Fault Fractal Dimension | Fracture Fractal Dimension D Value | Groundwater Sealing Coefficient | Groundwater Stability Index | Total Water Content of Coal Seams |
---|---|---|---|---|---|---|---|
Correlation degree | 0.792 | 0.777 | 0.768 | 0.764 | 0.762 | 0.758 | 0.744 |
Water Production Type | Sand–Mud Ratio | Total Water Content of Coal Seams | Fault Fractal Dimension | Fracture Fractal Dimension D Value | Groundwater Stability Index | Porosity | Groundwater Sealing Coefficient |
---|---|---|---|---|---|---|---|
Low production | <1.5 | <20,000 m3 | <0.6 | <1.78 | >3.7 | <5.5% | >160 |
Middle production | 1.5~3.5 | 20,000~40,000 m3 | 0.6~0.8 | 1.78~1.82 | 3.2~3.7 | 5.5~7.5% | 80~160 |
High production | >3.5 | >40,000 m3 | >0.8 | >1.82 | <3.2 | >7.5% | <80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, G.; Li, W.; Jiao, X. Characteristics and Sources of CBM Well-Produced Water in the Shouyang Block, China. Appl. Sci. 2024, 14, 4218. https://doi.org/10.3390/app14104218
Zhang B, Wang G, Li W, Jiao X. Characteristics and Sources of CBM Well-Produced Water in the Shouyang Block, China. Applied Sciences. 2024; 14(10):4218. https://doi.org/10.3390/app14104218
Chicago/Turabian StyleZhang, Bing, Gang Wang, Wei Li, and Xinglong Jiao. 2024. "Characteristics and Sources of CBM Well-Produced Water in the Shouyang Block, China" Applied Sciences 14, no. 10: 4218. https://doi.org/10.3390/app14104218
APA StyleZhang, B., Wang, G., Li, W., & Jiao, X. (2024). Characteristics and Sources of CBM Well-Produced Water in the Shouyang Block, China. Applied Sciences, 14(10), 4218. https://doi.org/10.3390/app14104218