The Activation Energy Temperature Dependence for Viscous Flow of Chalcogenides
Abstract
:1. Introduction
- Low temperatures T < Tg: isostructural Arrhenius-type law viscosity of the glass (E = EH);
- Intermediate temperatures Tg < T < TA: non-Arrhenius-type law formally expressed with an exponent E with variable activation energy of viscosity E = E(T);
- High temperatures T > TA: Arrhenius-type law viscosity (E = EL).
2. Modeling the Viscosity
3. Materials and Methods
4. Theoretical
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1946. [Google Scholar]
- Volf, M.B. Mathematical Approach to Glass; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Zaccone, A. Viscosity of Supercooled Liquids. In Theory of Disordered Solids; Lecture Notes in Physics; Springer: Cham, Switzerland, 2023; Volume 1015. [Google Scholar] [CrossRef]
- Zheng, Q.; Mauro, J.C. Viscosity of glass-forming systems. J. Am. Ceram. Soc. 2016, 100, 6–25. [Google Scholar] [CrossRef]
- Deubener, J. Viscosity of glass-forming melts. In Encyclopedia of Glass Science, Technology, History, and Culture; Wiley: New York, NY, USA, 2021; Chapter 4.1; pp. 431–451. [Google Scholar]
- Ojovan, M.I.; Louzguine-Luzgin, D.V. On Crossover Temperatures of Viscous Flow Related to Structural Rearrangements in Liquids. Materials 2024, 17, 1261. [Google Scholar] [CrossRef] [PubMed]
- Galimzyanov, B.; Doronina, M.; Mokshin, A. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network. Materials 2023, 16, 1127. [Google Scholar] [CrossRef] [PubMed]
- Hrma, P.; Ferkl, P.; Kruger, A.A. Arrhenian to non-Arrhenian crossover in glass melt viscosity. J. Non-Cryst. Solids 2023, 619, 122556. [Google Scholar] [CrossRef]
- Vogel, D.H. Das Temperaturabhaengigkeitsgesetz der Viskositaet von Fluessigkeiten. Phys. Zeit. 1921, 22, 645–646. [Google Scholar]
- Fulcher, G. Analysis of Recent Measurements of the Viscosity of Glasses. J. Am. Ceram. Soc. 1925, 8, 339–355. [Google Scholar] [CrossRef]
- Tammann, G.; Hesse, W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 1926, 156, 245–257. [Google Scholar] [CrossRef]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; Wiley: New York, NY, USA, 1970. [Google Scholar]
- Sanditov, D.S.; Bartenev, G.M. Physical Properties of Disordered Structures, Nauka: Novosibirsk, Russia, 1982.
- Xu, W.-S.; Douglas, J.F.; Sun, Z.-Y. Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Collective Motion. Macromolecules 2021, 54, 3001–3303. [Google Scholar] [CrossRef]
- Razumovskaya, I.V.; Bartenev, G.M. Glassy state. In Proceedings of the All-Union Conference on Glassy State, Leningrad, USSR, 1971; Nauka: Leningrad, Russia, 1971; p. 34. [Google Scholar]
- Sanditov, D.S.; Razumovskaya, I.V. New Approach to Justification of the Williams–Landel–Ferry Equation. Polym. Sci. Ser. A 2018, 60, 156–161. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Darmaev, M.V.; Sanditov, B.D. Application of the model of delocalized atoms to metallic glasses. Tech. Phys. 2017, 62, 53–57. [Google Scholar] [CrossRef]
- Richet, P.; Conradt, R.; Takada, A.; Dyon, J. (Eds.) Encyclopedia of Glass Science, Technology, History, and Culture; Wiley: Hoboken, NJ, USA, 2021; 1568p. [Google Scholar]
- Nemilov, S.V.; Petrovskii, G.T. A Study of the Viscosity of Glasses in the As–Se System. Zh. Prikl. Khim. 1963, 36, 977–981. [Google Scholar]
- Sanditov, D.S.; Mashanov, A.A.; Razumovskaya, I.V. On the temperature dependence of the glass transition activation energy. Polym. Sci. Ser. A 2020, 62, 588–596. [Google Scholar] [CrossRef]
- Nemilov, S.V. Viscosity and Structure of Glasses in the Selenium–Germanium System. Zh. Prikl. Khim. 1964, 37, 1020–1024. [Google Scholar]
- Orlova, G.M.; Kolomeitseva, S.E.; Timonov, A.S.; Kuznetsova, O.A. Viscosity and thermal expansion of glasses of the P–Se–Te system. Fizika i Khimiya Stekla 1979, 5, 546–549. [Google Scholar]
- Korepanova, N.A.; Chalabyan, G.A.; Orlova, G.M. Viscosity and elasticity of glass Sb-Ge-Se systems. Zh. Prikl. Khim. 1976, 49, 1173–1174. [Google Scholar]
- Orlova, G.M.; Udalov, S.S.; Manakhova, E.N. Elastic and thermal properties of glasses of the AsSe–TlSe, As2Se3–Tl2Se systems. Fizika i Khimiya Stekla 1985, 11, 215–218. [Google Scholar]
- Bartenev, G.M.; Sanditov, D.S. Relaxation Processes in Glassy Systems; Novosibirsk: Nauka, Russia, 1986; 238p. [Google Scholar]
- Rostiashvili, V.G.; Irzhak, V.I.; Rosenberg, B.A. Glass Transition of Polymers. L.: Chemistry; 1987; 192p. Available online: https://www.studmed.ru/rostiashvili-vg-irzhak-vi-rozenberg-ba-steklovanie-polimerov_dec103142dd.html (accessed on 25 October 2023).
- Angell, C.A.; Rao, K.J. Configurational excitations in condensed, and the “bond lattice” model for the liquid-glass transition. J. Chem. Phys. 1972, 57, 470–481. [Google Scholar] [CrossRef]
- Darmaev, M.V.; Ojovan, M.I.; Mashanov, A.A.; Chimytov, T.A. The Temperature Interval of the Liquid–Glass Transition of Amorphous Polymers and Low Molecular Weight Amorphous Substances. Appl. Sci. 2023, 13, 2742. [Google Scholar] [CrossRef]
- Filipovich, V.N. Vacancy-diffusion theory of viscosity of SiO2 and GeO2 glasses with low R2O content. Phys. Chem. Glass 1975, 1, 426–431. [Google Scholar]
- Nemilov, S.V. The nature of viscous flow of glasses with a frozen structure and some consequences of the valence-configuration theory of fluidity. Phys. Chem. Glass 1978, 4, 662–674. [Google Scholar]
- Mott, N.F. The viscosity of silicon dioxide. Philos. Mag. 1987, B56, 257–262. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Louzguine-Luzgin, D.V. On Structural Rearrangements during the Vitrification of Molten Copper. Materials 2022, 15, 1313. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.W. The flow of glass. J. Soc. Glass Technol. 1949, 33, 138–162. [Google Scholar]
- Doremus, R.H. Viscosity of silica. J. Appl. Phys. 2002, 92, 7619–7629. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Travis, K.P.; Hand, R.J. Thermodynamic parameters of bonds in glassy materials from viscosity–temperature relationships. J. Phys. Condens. Matter 2007, 19, 415107. [Google Scholar] [CrossRef]
- Glasstone, S.; Laidler, K.J.; Eyring, H. The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena; McGraw-Hill Book Company, Incorporated: Tokyo, Japan, 1941; 611p. [Google Scholar]
- Sanditov, D.S. Model of delocalized atoms in the physics of the vitreous state. J. Exp. Theor. Phys. 2012, 115, 112–124. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Ojovan, M.I. Relaxation aspects of the liquid—Glass transition. Phys. Uspekhi 2019, 62, 111–130. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Ojovan, M.I.; Darmaev, M.V. Glass transition criterion and plastic deformation of glass. Phys. B 2020, 582, 411914. [Google Scholar] [CrossRef]
№ | Composition, mol.% | Tg, K | C1 | C2, K | Eg, kJ/mol | |||
---|---|---|---|---|---|---|---|---|
As | Se | |||||||
1. | 3 | 97 | 316 | 11.5 | 39.0 | 30.1 | ||
2. | 5 | 95 | 320 | 12.3 | 45.9 | 32.8 | ||
3. | 10 | 90 | 331 | 15.4 | 87.1 | 42.6 | ||
4. | 25 | 75 | 364 | 17.5 | 152.3 | 53.0 | ||
5. | 50 | 50 | 440 | 15.1 | 130.5 | 55.2 | ||
Ge | Se | |||||||
1. | 8 | 92 | 352 | 14.1 | 82.9 | 41.2 | ||
2. | 10 | 90 | 356 | 23.0 | 237.3 | 68.2 | ||
3. | 15 | 85 | 396 | 18.3 | 209.6 | 60.2 | ||
4. | 17 | 83 | 411 | 17.5 | 224.0 | 60.0 | ||
5. | 20 | 80 | 430 | 20.6 | 327.7 | 73.7 | ||
Sb | Ge | Se | ||||||
1. | 5 | 10 | 85 | 370 | 20.5 | 206.4 | 63.2 | |
2. | 10 | 10 | 80 | 391 | 15.3 | 122.3 | 49.8 | |
3. | 5 | 15 | 80 | 408 | 14.2 | 140.9 | 48.3 | |
4. | 15 | 10 | 75 | 403 | 14.7 | 130.3 | 49.3 | |
5. | 10 | 15 | 75 | 422 | 21.1 | 233.5 | 74.0 | |
6. | 20 | 10 | 70 | 424 | 12.3 | 87.6 | 43.5 | |
7. | 15 | 15 | 70 | 445 | 13.6 | 118.0 | 50.3 | |
8. | 10 | 20 | 70 | 480 | 10.6 | 85.4 | 42.6 | |
9. | 20 | 15 | 65 | 489 | 10.8 | 66.1 | 43.9 |
№ | Composition, mol.% | Calculated Using (17) and (21) | Polynomial of 2nd Degree | Polynomial of 3rd Degree | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D1 | D2 | R2 | D1 | D2 | R2 | |||||
Sb | Ge | Se | ||||||||||
1. | 5 | 10 | 85 | 0.135 | 0.0007 | 0.446 | 0.0013 | 0.995 | 0.261 | 0.0030 | 0.998 | |
2. | 10 | 10 | 80 | 0.280 | 0.0023 | 0.372 | 0.0050 | 0.998 | 0.293 | 0.0019 | 0.995 | |
3. | 5 | 15 | 80 | 0.225 | 0.0016 | 0.361 | 0.0010 | 0.998 | 0.316 | 0.0052 | 0.995 | |
4. | 15 | 10 | 75 | 0.256 | 0.0020 | 0.554 | 0.0022 | 0.995 | 0.399 | 0.0012 | 0.999 | |
5. | 10 | 15 | 75 | 0.141 | 0.0006 | 0.310 | 0.0018 | 0.998 | 0.213 | 0.0024 | 0.999 | |
6. | 20 | 10 | 70 | 0.394 | 0.0045 | 0.529 | 0.0021 | 0.998 | 0.524 | 0.0003 | 0.999 | |
7. | 15 | 15 | 70 | 0.313 | 0.0027 | 0.447 | 0.0013 | 0.995 | 0.324 | 0.0017 | 0.999 | |
8. | 10 | 20 | 70 | 0.409 | 0.0048 | 0.326 | 0.0070 | 0.998 | 0.291 | 0.0001 | 0.993 | |
9. | 20 | 15 | 65 | 0.575 | 0.0087 | 0.482 | 0.0014 | 0.991 | 0.358 | 0.0031 | 0.997 | |
Ge | Se | |||||||||||
1. | 8 | 92 | 0.380 | 0.0046 | 0.514 | 0.0001 | 0.988 | 0.779 | 0.0063 | 0.998 | ||
2. | 10 | 90 | 0.496 | 0.0004 | 0.547 | 0.0015 | 0.998 | 0.651 | 0.0029 | 0.999 | ||
3. | 15 | 85 | 0.135 | 0.0006 | 0.342 | 0.0006 | 0.998 | 0.398 | 0.0012 | 0.999 | ||
4. | 17 | 83 | 0.122 | 0.0005 | 0.308 | 0.0005 | 0.998 | 0.385 | 0.0012 | 0.998 | ||
5. | 20 | 80 | 0.153 | 0.0002 | 0.272 | 0.0003 | 0.998 | 0.250 | 0.002 | 0.998 | ||
As | Se | |||||||||||
1. | 3 | 97 | 0.677 | 0.0173 | 0.682 | 0.0028 | 0.980 | 1.027 | 0.0107 | 0.993 | ||
2. | 5 | 95 | 0.611 | 0.0133 | 0.756 | 0.0033 | 0.987 | 1.074 | 0.0108 | 0.997 | ||
3. | 10 | 90 | 0.360 | 0.0041 | 0.773 | 0.0031 | 0.988 | 1.076 | 0.0092 | 0.996 | ||
4. | 25 | 75 | 0.203 | 0.0013 | 0.488 | 0.0009 | 0.997 | 0.403 | 0.0003 | 0.998 | ||
5. | 50 | 50 | 0.298 | 0.0023 | 0.486 | 0.0011 | 0.987 | 0.742 | 0.0047 | 0.998 | ||
P | Se | |||||||||||
1. | 10 | 90 | 0.180 | 0.0004 | 0.272 | 0.0003 | 0.998 | 0.289 | 0.0030 | 0.998 | ||
2. | 20 | 80 | 0.124 | 0.0002 | 0.524 | 0.0008 | 0.998 | 0.459 | 0.0007 | 0.998 | ||
3. | 28.57 | 71.43 | 0.100 | 0.0004 | 0.236 | 0.0002 | 0.999 | 0.215 | 0.0018 | 0.999 | ||
4. | 40 | 60 | 0.064 | 0.0001 | 0.019 | 0.0003 | 0.998 | 0.096 | 0.0001 | 0.999 | ||
AsSe | TlSe | |||||||||||
1. | 66.6 | 33.4 | 0.441 | 0.0053 | 0.440 | 0.0017 | 0.999 | 0.457 | 0.0057 | 0.999 | ||
AsSe | ||||||||||||
1. | 100 | 0.131 | 0.0005 | 0.151 | 0.0005 | 0.999 | 0.146 | 0.0030 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashanov, A.A.; Ojovan, M.I.; Darmaev, M.V.; Razumovskaya, I.V. The Activation Energy Temperature Dependence for Viscous Flow of Chalcogenides. Appl. Sci. 2024, 14, 4319. https://doi.org/10.3390/app14104319
Mashanov AA, Ojovan MI, Darmaev MV, Razumovskaya IV. The Activation Energy Temperature Dependence for Viscous Flow of Chalcogenides. Applied Sciences. 2024; 14(10):4319. https://doi.org/10.3390/app14104319
Chicago/Turabian StyleMashanov, Alexey A., Michael I. Ojovan, Migmar V. Darmaev, and Irina V. Razumovskaya. 2024. "The Activation Energy Temperature Dependence for Viscous Flow of Chalcogenides" Applied Sciences 14, no. 10: 4319. https://doi.org/10.3390/app14104319
APA StyleMashanov, A. A., Ojovan, M. I., Darmaev, M. V., & Razumovskaya, I. V. (2024). The Activation Energy Temperature Dependence for Viscous Flow of Chalcogenides. Applied Sciences, 14(10), 4319. https://doi.org/10.3390/app14104319