Molecular Identification of Ascomycetes from American Cranberry (Vaccinium macrocarpon Aiton) Grown in Plantation in Poland †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants
2.2. Isolation of Filamentous Fungi from American Cranberry Plants
2.3. Identification of Fungal Isolates Colonizing American Cranberry Plants
3. Results
3.1. Identification of Fungi That Colonize the Roots of American Cranberry
3.1.1. One-Year-Old Plants
3.1.2. Two-Year-Old Plants
3.1.3. Tree-Year-Old Plants
3.2. Identification of Fungi That Colonize Leaves of American Cranberry
3.2.1. One-Year-Old Plants
3.2.2. Two-Year-Old Plants
3.2.3. Three-Year-Old Plants
3.3. Identification of Fungi Colonizing Fruits of American Cranberry
3.3.1. One-Year-Old Plants
3.3.2. Two-Year-Old Plants
3.3.3. Three-Year-Old Plants
3.4. Fungal Growth on Semi-Selective Agars
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacombe, A.; Wu, V.C.H.; Tyler, S.; Edwards, K. Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. Int. J. Food Microbiol. 2010, 139, 102–107. [Google Scholar] [CrossRef]
- Viskelis, P.; Rubinskiene, M.; Jasutiene, I.; Sarkinas, A.; Daubaras, R.; Cesoniene, L. Anthocyanins, antioxidant and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009, 74, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Polashock, J.J.; Vaiciunas, J.; Oudemans, P.V. Identification of a new phytophthora species causing root and runner rot of cranberry in New Jersey. Phytopathology 2005, 95, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Kour, K.; Bakshi, P.; Sharma, R.M. Cranberry (Vaccinium macrocarpon Ait. L). In Cultivate Minor Temperate Fruit Scientifically; Ghosh, S.N., Kumar, A., Eds.; Jaya Publishing House: New Delhi, India, 2019; pp. 128–181. [Google Scholar]
- Szwonek, E.; Maciorowski, R.; Koziński, B.; Smolarz, K.; Sas-Paszt, L.; Bryk, H.; Derkowska, E.; Estabrooks, E. Initial growth and yield structure of selected cultivars of cranberry (Vaccinium macrocarpon Ait.) cultivated on mineral soils. Folia Hort. 2016, 28, 77–86. [Google Scholar] [CrossRef]
- Narwojsz, A.; Tańska, M.; Mazur, B.; Borowska, E.J. Fruit physical features, phenolic compounds profile and inhibition activities of cranberry cultivars (Vaccinium macrocarpon) compared to wild-grown cranberry (Vaccinium oxycoccos). Plant Foods Hum. Nutr. 2019, 74, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Koniarski, M.; Sitarek, M. Assessment of the growth, flowering and yielding intensity of cranberry. Zagadnienia Doradz. Rolniczego. 2022, 108, 63–74. [Google Scholar]
- Shear, C.L.; Stevens, N.E.; Bain, H.F. Fungous Diseases of the Cultivated Cranberry; US Department of Agriculture: Washington, DC, USA, 1931; Volume 258, pp. 1–58. [Google Scholar]
- Oudemans, P.V.; Caruso, F.L.; Strech, A.W. Cranberry fruit roti in the Northeast: A complex disease. Plant Dis. 1998, 82, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Michalecka, M.; Bryk, H.; Seliga, P. Identification and characterization of Diaporthe vaccinii Shear causing upright dieback and viscid rot of cranberry in Poland. Eur. J. Plant Pathol. 2016, 148, 595–605. [Google Scholar] [CrossRef]
- Sinkevicienė, J.; Sinkeviciute, A.; Cesoniene, L.; Daubaras, R. Fungi present in the clones and cultivars of European cranberry (Vaccinium oxycoccos) grown in Lithuania. Plants 2023, 12, 2360. [Google Scholar] [CrossRef]
- Karnkowski, W. Diaporthe vaccinii Shear. Zagrożenie dla Upraw Borówek i Żurawiny w Polsce. 2020. Available online: www.piorin.gov.pl (accessed on 15 April 2024).
- Olatinwo, R.O.; Hanson, E.J.; Shilder, A.M.C. A first assessment of the cranberry fruit rot complex in Michigan. Plant Dis. 2003, 87, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Doyle, V.P.; Oudemans, P.V.; Rehner, S.A.; Litt, A. Habitat and host indicate lineage identity in Colletotrichum gloeosporioides s.l. from wild and agricultural landscapes in North America. PLoS ONE 2013, 8, e62394. [Google Scholar] [CrossRef] [PubMed]
- Kowalik, M.; Kwiatkowska, J.; Duda-Franiak, K. Micromycetes on ericaceous plant leaves. Acta Mycol. 2015, 50, 1055. [Google Scholar] [CrossRef]
- Oudemans, P.V. Phytophthora species associated with cranberry root rot and surface irrigation water in New Jersey. Plant Dis. 1999, 83, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Sabaratnam, S.; Dicarlo, A.; Fitzpatrick, S.; Forge, T. Cranberry dieback disorder: A new and emerging threat to cranberry production in British Columbia. Acta Hortic. 2009, 810, 417–424. [Google Scholar] [CrossRef]
- Castro, C.; Davis, J.R.; Wiese, M.V. Quantitative estimation of Rhizoctonia solani AG-3 in soil. Phytopathology 1988, 78, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Vincelli, P.C.; Beaupre, C.M.S. Comparison of media for isolating Rhizoctonia solani from soil. Plant Dis. 1989, 73, 1014–1017. [Google Scholar] [CrossRef]
- Nash, S.M.; Snyder, W.C. Quantitative estimations by plate counts of propagules of the bean root rot fusarium in field soils. Phytopathology 1962, 52, 567–572. [Google Scholar]
- Edwards, S.G.; Seddon, B. Selective media for the specific isolation and enumeration of Botrytis cinerea conidia. Lett. Appl. Microbiol. 2001, 32, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C. A selective and indicative medium for groups of Penicillium viridicatum producing different mycotoxins in cereals. J. Appl. Microbiol. 1983, 54, 409–416. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, a Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansai, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Ryberg, M.; Kristiansson, E.; Abarenkov, K.; Larsson, K.H.; Koljalg, U. Taxonomic reliability of DNA sequences in public sequence databases: A fungal perspective. PLoS ONE 2006, 1, e59. [Google Scholar] [CrossRef] [PubMed]
- Tomah, A.A.; Alamer, I.S.A.; Li, B.; Zhang, J.Z. A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biol. Control 2020, 145, 104261. [Google Scholar] [CrossRef]
- Zheng, H.; Qiao, M.; Lv, Y.; Du, X.; Zhang, K.Q.; Yu, Z. New species of Trichoderma isolated as endophytes and saprobes from Southwest China. J. Fungi 2021, 7, 467. [Google Scholar] [CrossRef] [PubMed]
- Jaklitsch, W.M.; Samuels, G.J.; Dodd, S.L.; Lu, B.S.; Druzhinina, I.S. Hypocrea rufa/Trichoderma viride: A reassessment, and description of five closely related species with and without warted conidia. Stud. Mycol. 2006, 56, 135–177. [Google Scholar] [CrossRef] [PubMed]
- Aban, J.L. In vitro growth-promoting properties of non-dominant root symbiotic fungi (ND-RSF) from Drynaria quercifolia L. and their effects on PSB Rc10 Rice (Oryza sativa L.). Philipp. J. Sci. 2020, 149, 695–706. [Google Scholar] [CrossRef]
- Munir, E.; Yurnaliza; Lutfia, A.; Hartanto, A. Isolation and characterization of phosphate solubilizing activity of endophytic fungi from Zingiberaceous species. Online J. Biol. Sci. 2022, 22, 149–156. [Google Scholar] [CrossRef]
- Kubicek, C.P.; Komon-Zelazowska, M.; Irina, S.; Druzhinina, I.S. Fungal genus Hypocrea/Trichoderma: From barcodes to biodiversity. J. Zhejiang Univ. Sci. B. 2008, 9, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Naeimi, S.; Okhovvat, S.M.; Javan-Nikkhah, M.; Vagvolgyi, C.; Khosravi, V.; Kredics, L. Biological control of Rhizoctonia solani AG1-1A, the causal agent of rice sheath blight with Trichoderma strains. Phytopathol. Mediterr. 2010, 49, 287–300. Available online: http://www.jstor.org/stable/26458654 (accessed on 29 September 2023).
- Mulaw, B.T.; Kubicek, C.P.; Druzhinina, I.S. The rhizosphere of Coffea Arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Diversity 2010, 2, 527–549. [Google Scholar] [CrossRef]
- Mghalu, M.J.; Tsuji, T.; Kubo, N.; Kubota, M.; Hyakumachi, M. Selective accumulation of Trichoderma species in soils suppressive to radish damping-off disease after repeated inoculations with Rhizoctonia solani, binucleate Rhizoctonia and Sclerotium rolfsii. J. Gen. Plant Pathol. 2007, 73, 250–259. [Google Scholar] [CrossRef]
- Sariah, M.; Choo, C.W.; Zakaria, H.; Norihan, M.S. Quantification and characterisation of Trichoderma spp. from different ecosystems. Mycopathologia 2005, 159, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Chaverri, P.; Branco-Rocha, F.; Jaklitsch, W.; Gazis, R.; Degenkolb, T.; Samuels, G.J. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015, 107, 558–590. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.T.; Zhuang, W.Y. Three Trichoderma species new to China. Mycosystema 2016, 35, 1008–1017. [Google Scholar] [CrossRef]
- Tang, G.T.; Li, Y.; Zhou, Y.; Zhu, Y.H.; Zheng, X.J.; Chang, X.L.; Zhang, S.R.; Gong, G.T. Diversity of Trichoderma species associated with soil in the Zoige alpine wetland of Southwest China. Sci. Rep. 2022, 12, 21709. [Google Scholar] [CrossRef]
- Baroncelli, R.; Da Lio, D.; Vannacci, G.; Sarrocco, S. Genome resources for the endophytic fungus Paraphaeosphaeria sporulosa. Mol. Plant Microbe. Interact. 2020, 33, 1098–1099. [Google Scholar] [CrossRef]
- Carrieri, R.; Borriello, G.; Piccirillo, G.; Lahoz, E.; Sorrentino, R.; Cermola, M.; Bolletti Censi, S.; Grauso, L.; Mangoni, A.; Vinale, F. Antibiotic activity of a Paraphaeosphaeria sporulosa—Produced diketopiperazine against Salmonella enterica. J. Fungi 2020, 10, 83. [Google Scholar] [CrossRef]
- Costa, D.; Tavares, R.M.; Baptista, P.; Lino-Neto, T. Cork oak endophytic fungi as potential biocontrol agents against Biscogniauxia mediterranea and Diplodia corticola. J. Fungi 2020, 6, 287. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, S.E.; Caradus, J.R.; Johnson, L.J. Fungal endophyte diversity from tropical forage grass Brachiaria. Plant Ecol. Divers. 2018, 11, 611–624. [Google Scholar] [CrossRef]
- Wilson, A.; Cuddy, W.S.; Park, R.F.; Harm, G.F.; Priest, M.J.; Bailey, J.; Moffitt, M.C. Investigating hyperparasites as potential biological control agents of rust pathogens on cereal crops. Australas. Plant Pathol. 2020, 49, 231–238. [Google Scholar] [CrossRef]
- Zhu, M.; Duan, X.; Cai, P.; Li, Y.; Qiu, Z. Deciphering the genome of Simplicillium aogashimaense to understand its mechanisms against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici. Phytopathol. Res. 2022, 4, 16. [Google Scholar] [CrossRef]
- Ammar, H.A.; Ezzat, S.M.; Elshourbagi, E.; Elshahat, H. Titer improvement of mycophenolic acid in the novel producer strain Penicillium arizonense and expression analysis of its biosynthetic genes. BMC Microbiol. 2023, 23, 135. [Google Scholar] [CrossRef]
- Marfetán, J.A.; Vélez, M.L.; Comerio, R.; Gallo, A.; Romero, S. Rhizospheric Penicillium and Talaromyces strains in Austrocedrus chilensis native forests: Identification and evaluation of biocontrol candidates against the pathogen Phytophthora austrocedri. J. Plant Prot. Res. 2023, 63, 239–253. [Google Scholar] [CrossRef]
- Visagie, C.M.; Frisvad, J.C.; Houbraken, J.; Visagie, A.; Samson, R.A.; Jacobs, K. A re-evaluation of Penicillium section Canescentia, including the description of five new species. Persoonia 2021, 46, 163–187. [Google Scholar] [CrossRef]
- Mansouri, S.; Houbraken, J.; Samson, R.A.; Frisvad, J.C.; Christensen, M.; Tuthill, D.E.; Koutaniemi, S.; Hatakka, A.; Lankinen, P. Penicillium subrubescens, a new species efficiently producing inulinase. Antonie Van Leeuwenhoek 2013, 103, 1343–1357. [Google Scholar] [CrossRef]
- Monmi Pangging, M.; Nguyen, T.T.T.; Lee, H.B. Seven new records of Penicillium species belonging to section Lanata-Divaricata in Korea. Mycobiology 2021, 49, 363–375. [Google Scholar] [CrossRef]
- Demjanová, S.; Jevinová, P.; Pipová, M.; Regecová, I. Identification of Penicillium verrucosum, Penicillium commune, and Penicillium crustosum isolated from chicken eggs. Processes 2020, 9, 53. [Google Scholar] [CrossRef]
- Tournas, V.H.; Niazi, N.S.; Kohn, J.S. Fungal presence in selected tree nuts and dried fruits. Microbiol. Insights 2015, 8, MBI-S24308. [Google Scholar] [CrossRef] [PubMed]
- Al-Bedak, O.A.; Abdel-Sater, M.A.; Abdel-Latif, A.M.A.F.; Abdel-Wahab, D.A. Aspergillus creber and A. keveii, two new records as endophytes from wild medicinal plants in Egypt. J. Multidiscip. Sci. 2020, 2, 1–9. [Google Scholar] [CrossRef]
- Piontek, M.; Łuszczyńska, K.; Lechów, H. Occurrence of the toxin-producing Aspergillus versicolor Tiraboschi in Residential Buildings. Int. J. Environ. Res. Public Health 2016, 13, 862. [Google Scholar] [CrossRef] [PubMed]
- Jurjevic, Z.; Peterson, S.W.; Horn, B.W. Aspergillus section Versicolores: Nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 2012, 3, 59–79. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.; Frisvad, J.C.; Sondergaard, I.; Rasmussen, I.S.; Larsen, L.S. Associations between fungal species and water-damaged building materials. Appl. Environ. Microbiol. 2011, 77, 4180–4188. [Google Scholar] [CrossRef] [PubMed]
- Moldes-Anaya, A.; Rundberget, T.; Fæste, C.K.; Eriksen, G.S.; Bernhoft, A. Neurotoxicity of Penicillium crustosum secondary metabolites: Tremorgenic activity of orally administered penitrem A and thomitrem A and E in mice. Toxicon 2012, 60, 1428–1435. [Google Scholar] [CrossRef]
- Amaike, S.; Keller, N.P. Aspergillus flavus. Annu. Rev. Phytopathol. 2011, 49, 107–133. [Google Scholar] [CrossRef]
- Latgé, J.P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350. [Google Scholar] [CrossRef]
- Miller, S.A.; Patel, N.; Stanley, C.J. Cranberry pests and diseases in New Zealand. Acta Hortic. 2006, 715, 509–512. [Google Scholar] [CrossRef]
- Liao, C.; Senanayake, I.C.; Dong, W.; Chethana, K.W.T.; Tangtrakulwanich, K.; Zhang, Y.; Doilom, M. Taxonomic and phylogenetic updates on Apiospora: Introducing four new species from Wurfbainia villosa and grasses in China. J. Fungi 2023, 9, 1087. [Google Scholar] [CrossRef]
- Mamgain, A.; Roychowdhury, R.; Tah, J. Alternaria pathogenicity and its strategic controls. Res. J. Biol. 2013, 1, 1–9. [Google Scholar]
- Landschoot, S.; Vandecasteele, M.; De Baets, B.; Höfte, M.; Audenaert, K.; Haesaert, G. Identification of A. arborescens, A. grandis, and A. protenta as new members of the European Alternaria population on potato. Fungal. Biol. 2017, 121, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Liang, Q.W.; Nzabanita, C.; Li, Y.Z. Paraphoma root rot of alfalfa (Medicago sativa) in Inner Mongolia, China. Plant Pathol. 2020, 69, 231–239. [Google Scholar] [CrossRef]
- De Gruyter, J.; Woudenberg, J.H.C.; Aveskamp, M.M.; Verkley, G.J.M.; Groenewald, J.Z.; Crous, P.W. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 2010, 102, 1066–1081. [Google Scholar] [CrossRef] [PubMed]
- Iliff, G.J.; Mukherjee, R.; Gruszewski, H.A.; Schmale, D.G., III; Jung, S.; Boreyko, J.B. Phase-change-mediated transport and agglomeration of fungal spores on wheat awns. J. R. Soc. Interface 2022, 19, 2021087. [Google Scholar] [CrossRef] [PubMed]
- Keirnan, E.C.; Tan, Y.P.; Laurence, M.H.; Mertin, A.A.; Liew, E.C.Y.; Summerell, B.A.; Shivas, R.G. Cryptic diversity found in Didymellaceae from Australian native legumes. MycoKeys 2021, 78, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Baaji, Y.; Farokhinejad, R.; Mehrabi-Koushki, M. New host and record of Didymella prosopidis from Iran. Mycologia Iranica 2022, 9, 117–121. [Google Scholar] [CrossRef]
- Schroers, H.J.; Baayen, R.P.; Meffert, J.P.; De Gruyter, J.; Hooftman, M.; O’Donnell, K. Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex. Mycologia 2004, 96, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Cinget, B.; Labbe, C.; Asselin, Y.; Belanger, R.R. New insights into the fungal diversity of cranberry fruit rot in Quebec farms through a large-scale molecular analysis. Plant. Dis. 2021, 106, 215–222. [Google Scholar] [CrossRef]
- Polashock, J.J.; Caruso, F.L.; Oudemans, P.V.; Mc Manus, P.S.; Crouch, J.A. The North American cranberry fruit rot fungal community: A systematic overview using morphological and phylogenetic affinities. Plant Pathol. 2009, 58, 1116–1127. [Google Scholar] [CrossRef]
- Lombard, L.; van Leeuwen, G.C.M.; Guarnaccia, V.; Polizzi, G.; van Rijswick, P.C.J.; Rosendahl, K.C.H.M.; Gabler, J.; Crous, P.W. Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathol. Mediterr. 2014, 53, 287–299. Available online: https://www.jstor.org/stable/43871781 (accessed on 29 September 2023).
- Jovaisiene, Z. Diaporthe vaccinii. Diagnostics Bull. OEPP/EPPO 2009, 39, 18–24. [Google Scholar] [CrossRef]
- Chaisiri, C.; Liu, X.; Lin, Y.; Fu, Y.; Zhu, F.; Luo, C. Phylogenetic and haplotype network analyses of Diaporthe eres species in China based on sequences of multiple loci. Biology 2021, 10, 179. [Google Scholar] [CrossRef]
Isolation Media * | Numbers of Isolates and Their Name Cod ** | ||||||||
---|---|---|---|---|---|---|---|---|---|
Roots | Leaves | Fruits | |||||||
1 Year | 2 Years | 3 Years | 1 Year | 2 Years | 3 Years | 1 Year | 2 Years | 3 Years | |
MBR | 12 (R1YM) | 15 (R2YM) | 10 (R3YM) | 7 (L1YM) | 6 (L2YM) | 9 (L3YM) | 0 | 4 (F2YM) | 3 (F3YM) |
PRYES | nt | nt | nt | 5 (L1YP) | 7 (L2YP) | 3 (L3YP) | 1 (F1YP) | 4 (F2YP) | 6 (F3YP) |
BSM | nt | nt | nt | 1 (L1YB) | 6 (L2YB) | 4 (L3YB) | 0 | 1 (F2YB) | 1 (F3YB) |
N&S | 5 (R1YF) | 6 (R2YF) | 4 (R3YF) | 4 (L1YF) | 1 (L2YF) | 0 | 0 | 0 | 0 |
K&H | 2 (R1YR) | 7 (R2YR) | 7 (R3YR) | nt | nt | nt | nt | nt | nt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oksińska, M.P.; Magnucka, E.G.; Kmieć, A.; Pietr, S.J. Molecular Identification of Ascomycetes from American Cranberry (Vaccinium macrocarpon Aiton) Grown in Plantation in Poland. Appl. Sci. 2024, 14, 4328. https://doi.org/10.3390/app14104328
Oksińska MP, Magnucka EG, Kmieć A, Pietr SJ. Molecular Identification of Ascomycetes from American Cranberry (Vaccinium macrocarpon Aiton) Grown in Plantation in Poland. Applied Sciences. 2024; 14(10):4328. https://doi.org/10.3390/app14104328
Chicago/Turabian StyleOksińska, Małgorzata P., Elżbieta G. Magnucka, Anna Kmieć, and Stanisław J. Pietr. 2024. "Molecular Identification of Ascomycetes from American Cranberry (Vaccinium macrocarpon Aiton) Grown in Plantation in Poland" Applied Sciences 14, no. 10: 4328. https://doi.org/10.3390/app14104328
APA StyleOksińska, M. P., Magnucka, E. G., Kmieć, A., & Pietr, S. J. (2024). Molecular Identification of Ascomycetes from American Cranberry (Vaccinium macrocarpon Aiton) Grown in Plantation in Poland. Applied Sciences, 14(10), 4328. https://doi.org/10.3390/app14104328