Anaerobic Co-Digestion of Food Waste and Microalgae at Variable Mixing Ratios: Enhanced Performance, Kinetic Analysis, and Microbial Community Dynamics Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Substrates and Inoculum
2.2. Batch Co-Digestion of FW and MA at Various Ratios
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effects of Mixing Ratios on Biogas Production
3.2. Estimation of Kinetic Parameters during Anaerobic Co-Digestion
3.3. Evolution of Chemical Parameters
3.4. Response of Bacterial and Archaeal Communities
3.4.1. Effects of Mixing Ratio on Bacterial Community
3.4.2. Effects of Mixing Ratio on Archaeal Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, M.; Liu, X.; Wang, D.; Yang, Q.; Duan, A.; Chen, H.; Liu, Y.; Wang, Q.; Ni, B.J. Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. Water Res. 2021, 188, 116539. [Google Scholar] [CrossRef]
- Le Pera, A.; Sellaro, M.; Pellegrino, C.; Limonti, C.; Siciliano, A. Combined Pre-Treatment Technologies for Cleaning Biogas before Its Upgrading to Biomethane: An Italian Full-Scale Anaerobic Digester Case Study. Appl. Sci. 2024, 14, 2053. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Chu, S.; Su, Y.; Wu, D.; Xie, B. Metatranscriptomic insight into the effects of antibiotic exposure on performance during anaerobic co-digestion of food waste and sludge. J. Hazard. Mater. 2022, 423, 127163. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Alengebawy, A.; El-Sherif, D.M.; Gaballah, M.S.; Elwakeel, K.Z.; El-Qelish, M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. Environ. Res. 2023, 225, 115558. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Awasthi, A.K.; Sivakumar, N.; Lukk, T.; Pecoraro, L.; Thakur, V.K.; Roberts, D.; Newbold, J.; Gupta, V.K. Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresour. Technol. 2021, 322, 124548. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, H.M.; Lee, Y.H.; Jeon, K.W.; Jeong, D.W. Optimization of a renewable hydrogen production system from food waste: A combination of anaerobic digestion and biogas reforming. Waste Manag. 2022, 144, 272–284. [Google Scholar] [CrossRef]
- O’Connor, J.; Mickan, B.S.; Rinklebe, J.; Song, H.; Siddique, K.H.; Wang, H.; Kirkham, M.; Bolan, N.S. Environmental implications, potential value, and future of food-waste anaerobic digestate management: A review. J. Environ. Manag. 2022, 318, 115519. [Google Scholar] [CrossRef]
- Wang, L.T.; Lei, Z.F.; Zhang, Z.Y.; Shimizu, K.; Yuan, T.; Li, S.L.; Liu, S.T. Insight into enhanced acetic acid production from food waste in anaerobic hydrolysis/acidification with Fe3O4 supplementation. Waste Manag. 2022, 150, 310–319. [Google Scholar] [CrossRef]
- Zhang, L.; Loh, K.C. Synergistic effect of activated carbon and encapsulated trace element additive on methane production from anaerobic digestion of food wastes—Enhanced operation stability and balanced trace nutrition. Bioresour. Technol. 2019, 278, 108–115. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, R.; Jiang, Q.; Sun, T.; Li, M.; Shi, J.; Chai, H.; Gu, L.; Ai, H.; He, Q. Effects of green waste participation on the co-digestion of residual sludge and kitchen waste: A preliminary study. Sci. Total Environ. 2019, 671, 838–849. [Google Scholar] [CrossRef]
- Suarez, E.; Tobajas, M.; Mohedano, A.F.; de la Rubia, M.A. Energy recovery from food waste and garden and park waste: Anaerobic co-digestion versus hydrothermal treatment and anaerobic co-digestion. Chemosphere 2022, 297, 134223. [Google Scholar] [CrossRef]
- Liu, B.; Tian, G.; Zhou, K.; Yang, Y.; Yang, Z.; Zhang, T.; Bian, B. Option of treatment scenario for food waste anaerobic digestion by-products based on comprehensive evaluation and scenario promotion benefits analysis. J. Clean. Prod. 2022, 374, 133861. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wei, W.; Wang, Y.; Ni, B.J. Enhancing methane production from algae anaerobic digestion using diatomite. J. Clean. Prod. 2021, 315, 128138. [Google Scholar] [CrossRef]
- Qi, C.; Zhang, L.; Fang, J.; Lei, B.; Tang, X.; Huang, H.; Wang, Z.; Si, Z.; Wang, G. Benthic cyanobacterial detritus mats in lacustrine sediment: Characterization and odorant producing potential. Environ. Pollut. 2020, 256, 113453. [Google Scholar] [CrossRef]
- Zhao, M.X.; Ruan, W.Q. Biogas performance from co-digestion of Taihu algae and kitchen wastes. Energy Convers. Manag. 2013, 75, 21–24. [Google Scholar] [CrossRef]
- Fermoso, F.G.; Hidalgo, C.; Trujillo-Reyes, A.; Cubero-Cardoso, J.; Serrano, A. Effect of harvesting time in the methane production on the anaerobic digestion of microalgae. Environ. Technol. 2024, 45, 827–834. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, M.; Bian, B.; Yang, Z.; Yang, W.; Zhang, L. Full-scale thermophilic aerobic co-composting of blue-green algae sludge with livestock faeces and straw. Sci. Total Environ. 2021, 753, 142079. [Google Scholar] [CrossRef]
- Xu, J.; Upcraft, T.; Tang, Q.; Guo, M.; Huang, Z.; Zhao, M.; Ruan, W. Hydrogen generation performance from Taihu algae and food waste by anaerobic codigestion. Energy Fuels 2019, 33, 1279–1289. [Google Scholar] [CrossRef]
- Srivastava, N.; Alhazmi, A.; Mohammad, A.; Haque, S.; Srivastava, M.; Pal, D.B.; Singh, R.; Mishra, P.; Dai Viet, N.V.; Yoon, T. Biohydrogen production via integrated sequential fermentation using magnetite nanoparticles treated crude enzyme to hydrolyze sugarcane bagasse. Int. J. Hydrogen Energy 2022, 47, 30861–30871. [Google Scholar] [CrossRef]
- Solé-Bundó, M.; Passos, F.; Romero-Güiza, M.S.; Ferrer, I.; Astals, S. Co-digestion strategies to enhance microalgae anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2019, 112, 471–482. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, X.; Zhang, D.; Qiu, Y.; Guo, R.; Wang, L. Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy Environ. Sci. 2011, 4, 1511–1515. [Google Scholar] [CrossRef]
- Castro, Y.A.; Rodríguez, A.; Rivera, E. Biomethane production kinetics during the anaerobic co-digestion of Sargassum spp. and food waste using batch and fed-batch systems in Punta Cana, Dominican Republic. Mater. Renew. Sustain. Energy 2022, 11, 287–297. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Xie, H.; Cao, W.; Zhang, Y. Varied promotion effects and mechanisms of biochar on anaerobic digestion (AD) under distinct food-to-microorganism (F/M) ratios and biochar dosages. Waste Manag. 2023, 155, 118–128. [Google Scholar] [CrossRef]
- Kim, J.; Kang, C.M. Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Bioresour. Technol. 2015, 189, 409–412. [Google Scholar] [CrossRef]
- Du, X.; Tao, Y.; Li, H.; Liu, Y.; Feng, K. Synergistic methane production from the anaerobic co-digestion of Spirulina platensis with food waste and sewage sludge at high solid concentrations. Renew. Energy 2019, 142, 55–61. [Google Scholar] [CrossRef]
- Ferreira, T.B.; Passos, F.; Chernicharo, C.A.; de Souza, C.L. Anaerobic digestion of food waste: Effect of the organic load variation in a demo-scale system. Waste Biomass Valoriz. 2021, 12, 4407–4417. [Google Scholar] [CrossRef]
- Riya, S.; Suzuki, K.; Meng, L.; Zhou, S.; Terada, A.; Hosomi, M. The influence of the total solid content on the stability of dry-thermophilic anaerobic di-gestion of rice straw and pig manure. Waste Manag. 2018, 76, 350–356. [Google Scholar] [CrossRef]
- Yan, W.; Chen, Y.; Shen, N.; Wang, G.; Wan, J.; Huang, J. The influence of a stepwise pH increase on volatile fatty acids production and phosphorus release during Al-waste activated sludge fermentation. Bioresour. Technol. 2021, 320, 124276. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Peng, Y.; Huang, W.; Liu, J.; Mironov, V.; Zhang, S. Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste. Water Res. 2022, 217, 118440. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Experimental and kinetic study on anaerobic digestion of food waste: The effect of total solids and pH. J. Renew. Sustain. Energy 2015, 7, 063104. [Google Scholar] [CrossRef]
- Sun, C.; Guo, L.; Zheng, Y.; Yu, D.; Jin, C.; Zhao, Y.; Yao, Z.; Gao, M.; She, Z. Effect of mixed primary and secondary sludge for two-stage anaerobic digestion (AD). Bioresour. Technol. 2022, 343, 126160. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Sun, Y.; Yuan, Z. Bioaugmentation strategy for enhancing anaerobic digestion of high C/N ratio feedstock with methanogenic enrichment culture. Bioresour. Technol. 2018, 261, 188–195. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Q.; Qu, Y.; Dai, Y.; He, Y.; Wang, C.H.; Tong, Y.W. Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production. Appl. Energy 2020, 257, 113988. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, W.; Liu, M.; Lv, H.; Liu, Y.; Niu, Q. Biogas production, DOM performance and microbial community changes in anaerobic co-digestion of chicken manure with Enteromorpha and green waste. Biomass Bioenergy 2022, 158, 106359. [Google Scholar] [CrossRef]
- Wu, J.W.; Pei, S.Z.; Zhou, C.S.; Liu, B.F.; Cao, G.L. Assessment of potential biotoxicity induced by biochar-derived dissolved organic matters to biological fermentative H2 production. Sci. Total Environ. 2022, 838, 156072. [Google Scholar] [CrossRef]
- Zhang, L.; Li, F.; Kuroki, A.; Loh, K.C.; Wang, C.H.; Dai, Y.; Tong, Y.W. Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis. Bioresour. Technol. 2020, 302, 122892. [Google Scholar] [CrossRef]
- Rzymski, P.; Budzulak, J.; Niedzielski, P.; Klimaszyk, P.; Proch, J.; Kozak, L.; Poniedziałek, B. Essential and toxic elements in commercial microalgal food supplements. J. Appl. Phycol. 2019, 31, 3567–3579. [Google Scholar] [CrossRef]
- Park, J.H.; Yoon, J.J.; Park, H.D.; Lim, D.J.; Kim, S.H. Anaerobic digestibility of algal bioethanol residue. Bioresour. Technol. 2012, 113, 78–82. [Google Scholar] [CrossRef]
- Plude, S.; Demirer, G.N. Valorization of harmful algal blooms and food waste as bio-methane. Environ. Prog. Sustain. Energy 2020, 40, e13561. [Google Scholar] [CrossRef]
- Browne, J.D.; Murphy, J.D. Assessment of the resource associated with biomethane from food waste. Appl. Energy 2013, 104, 170–177. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kobayashi, T.; Kumar, G.; Xu, K. Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp.; Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation. Chem. Eng. J. 2016, 299, 332–341. [Google Scholar] [CrossRef]
- El-Mashad, H.M. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresour. Technol. 2013, 132, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Tu, W.M.; Wu, M.H.; Zhang, Z.T.; Wang, H. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. Bioresour. Technol. 2021, 332, 125116. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, M.; Li, J.; Yao, Y.; Tang, J.; Niu, Q. The dosage-effect of biochar on anaerobic digestion under the suppression of oily sludge: Performance variation, microbial community succession and potential detoxification mechanisms. J. Hazard. Mater. 2022, 421, 126819. [Google Scholar] [CrossRef]
Models | Parameters | Units | Treatments (FW/MA Ratio) | ||||
---|---|---|---|---|---|---|---|
0:1 | 1:3 | 1:1 | 3:1 | 1:0 | |||
P-experimental | mL/g VS | 302.69 | 562.08 | 636.13 | 738.62 | 864.24 | |
First-order model | P0-potential yield | mL/g VS | 292.30 | 540.29 | 613.09 | 703.59 | 832.09 |
k | 1/d | 0.25 | 0.30 | 0.30 | 0.25 | 0.22 | |
R2 | 0.98 | 0.97 | 0.98 | 0.96 | 0.96 | ||
Modified Gompertz model | P0-potential yield | mL/g VS | 286.63 | 531.31 | 603.99 | 688.08 | 811.92 |
Rm | mL/(g Vs d) | 48.72 | 109.22 | 123.81 | 121.68 | 122.55 | |
λ | d | 0 | 0 | 0 | 0 | 0 | |
R2 | 0.96 | 0.93 | 0.95 | 0.91 | 0.91 | ||
Logistic model | P0-potential yield | mL/g VS | 284.78 | 528.75 | 601.29 | 683.78 | 806.42 |
Rm | mL/(g VS d) | 47.07 | 104.90 | 118.37 | 117.66 | 117.41 | |
λ | d | 0 | 0 | 0 | 0 | 0 | |
R2 | 0.94 | 0.91 | 0.93 | 0.89 | 0.88 | ||
Cone model | P0-potential yield | mL/g VS | 306.06 | 595.36 | 657.19 | 817.59 | 964.00 |
k | 1/d | 0.36 | 0.44 | 0.45 | 0.33 | 0.29 | |
n | 1.41 | 1.01 | 1.16 | 0.90 | 0.93 | ||
R2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Sample | Sobs | Ace | Shannon | Simpson | Goods Coverage |
---|---|---|---|---|---|
FW/MA = 0:1 | 415 | 557.73 | 3.27 | 0.77 | 0.9987 |
FW/MA = 1:3 | 409 | 530.78 | 3.58 | 0.84 | 0.9988 |
FW/MA = 1:1 | 473 | 618.43 | 3.66 | 0.83 | 0.9987 |
FW/MA = 3:1 | 468 | 617.15 | 3.83 | 0.86 | 0.9986 |
FW/MA = 1:0 | 450 | 599.47 | 3.94 | 0.88 | 0.9986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Sun, X.; Huang, Y.; Liang, T.; Lu, J.; Zhang, L.; Qi, C. Anaerobic Co-Digestion of Food Waste and Microalgae at Variable Mixing Ratios: Enhanced Performance, Kinetic Analysis, and Microbial Community Dynamics Investigation. Appl. Sci. 2024, 14, 4387. https://doi.org/10.3390/app14114387
Pan Z, Sun X, Huang Y, Liang T, Lu J, Zhang L, Qi C. Anaerobic Co-Digestion of Food Waste and Microalgae at Variable Mixing Ratios: Enhanced Performance, Kinetic Analysis, and Microbial Community Dynamics Investigation. Applied Sciences. 2024; 14(11):4387. https://doi.org/10.3390/app14114387
Chicago/Turabian StylePan, Zhiyong, Xuan Sun, Yali Huang, Tian Liang, Jilai Lu, Limin Zhang, and Chuang Qi. 2024. "Anaerobic Co-Digestion of Food Waste and Microalgae at Variable Mixing Ratios: Enhanced Performance, Kinetic Analysis, and Microbial Community Dynamics Investigation" Applied Sciences 14, no. 11: 4387. https://doi.org/10.3390/app14114387
APA StylePan, Z., Sun, X., Huang, Y., Liang, T., Lu, J., Zhang, L., & Qi, C. (2024). Anaerobic Co-Digestion of Food Waste and Microalgae at Variable Mixing Ratios: Enhanced Performance, Kinetic Analysis, and Microbial Community Dynamics Investigation. Applied Sciences, 14(11), 4387. https://doi.org/10.3390/app14114387