Study on the Seismic Response of a Water-Conveyance Tunnel Considering Non-Uniform Longitudinal Subsurface Geometry and Obliquely Incident SV-Waves
Abstract
:1. Introduction
2. Problem Definitions
3. Establishing the Numerical Model
3.1. General Model Information
3.2. Constitutive Model
3.3. Input Ground Motion and Boundary Conditions
4. Results and Analysis
4.1. Analysis of Wave Field
4.2. Acceleration Response of Tunnel Lining
4.3. Damage Assessment of Tunnel Lining
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.L.; Wang, T.T.; Su, J.J.; Lin, C.H.; Seng, C.R.; Huang, T.H. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake. Tunn. Undergr. Space Technol. 2001, 16, 133–150. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, B.; Yang, X.; Tao, S. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake. Eng. Geol. 2014, 180, 85–98. [Google Scholar] [CrossRef]
- Li, T. Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for a seismic tunnel construction. Bull. Eng. Geol. Environ. 2012, 71, 297–308. [Google Scholar] [CrossRef]
- Hashash, Y.M.; Hook, J.J.; Schmidt, B.; John, I.; Yao, C. Seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 2001, 16, 247–293. [Google Scholar] [CrossRef]
- Stamos, A.A.; Beskos, D.E. Dynamic analysis of large 3-D underground structures by the BEM. Earthq. Eng. Struct. Dyn. 1995, 24, 917–934. [Google Scholar] [CrossRef]
- Manolis, G.D.; Dineva, P.S. Elastic waves in continuous and discontinuous geological media by boundary integral equation methods: A review. Soil. Dyn. Earthq. Eng. 2015, 70, 11–29. [Google Scholar] [CrossRef]
- Huang, J.-Q.; Du, X.-L.; Zhao, M.; Zhao, X. Impact of incident angles of earthquake shear (S) waves on 3-D non-linear seismic responses of longlined tunnels. Eng. Geol. 2016, 222, 168–185. [Google Scholar] [CrossRef]
- de Barros, F.C.P.; Luco, J.E. Diffraction of obliquely incident waves by a cylindrical cavity embedded in a layered viscoelastic half-space. Soil. Dyn. Earthq. Eng. 1993, 12, 159–171. [Google Scholar] [CrossRef]
- Huang, J.; Du, X.; Jin, L.; Zhao, M. Impact of incident angles of P waves on the dynamic responses of long lined tunnels. Earthq. Eng. Struct. Dyn. 2016, 45, 2435–2454. [Google Scholar] [CrossRef]
- Stamos, A.A.; Beskos, D.E. 3-D seismic response analysis of long lined tunnels in halfspace. Soil. Dyn. Earthq. Eng. 1996, 15, 111–118. [Google Scholar] [CrossRef]
- Pitilakis, K.; Tsinidis, G. Performance and seismic design of underground structures. In Earthquake Geotechnical Engineering Design; Maugeri, M., Soccodato, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 279–340. [Google Scholar] [CrossRef]
- Kiureghian, A.D. A coherency model for spatially varying ground motions. Earthq. Eng. Struct. Dyn. 1996, 19, 533–547. [Google Scholar] [CrossRef]
- Yan, L.Q.; Abbas, H.; Li, P.; Song, E.X. A numerical study on the transverse seismic response of lined circular tunnels under obliquely incident asynchronous P and SV waves. Tunn. Undergr. Space Technol. 2020, 97, 103235. [Google Scholar] [CrossRef]
- Li, P.; Song, E.X. Three-dimensional numerical analysis for the longitudinal seismic response of tunnels under an asynchronous wave input. Comput. Geotech. 2015, 63, 229–243. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.J.; Liang, J.W. 2.5D FE-BE modelling of dynamic responses of segmented tunnels subjected to obliquely incident seismic waves. Soil. Dyn. Earthq. Eng. 2022, 163, 107564. [Google Scholar] [CrossRef]
- Zhu, J.; Liang, J.; Ba, Z. A 2.5D equivalent linear model for longitudinal seismic analysis of tunnels in water-saturated poroelastic half-space. Comput. Geotech. 2019, 109, 166–188. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, Q.; Zhang, Y.; Liu, Z.; He, Y. Three-Dimensional Nonlinear Seismic Response of Immersed Tunnel in Horizontally Layered Site under Obliquely Incident SV Waves. Shock Vib. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.J.; Liang, J.W.; Kontoe, S.; He, Q.; Chen, S. Effects of pulse-like ground motions on tunnels in saturated poroelastic soil for obliquely incident seismic waves. Soil Dyn. Earthq. Eng. 2023, 173, 107564. [Google Scholar] [CrossRef]
- Yang, Y.-B.; Wang, X.; Zhou, Z.; Zhang, X.; Li, Z. Seismic analysis of underground tunnels subjected to 3D oblique incident P and SV waves by 2.5D approach. Undergr. Space 2023, 12, 271–286. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Feng, Y.Z.; Tang, A.P. Influence of oblique incidence of P-waves on seismic response of prefabricated utility tunnels considering joints. Soil. Dyn. Earthq. Eng. 2023, 167, 107797. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Z.X.; Wu, C.; Liang, J. The scattering of plane P, SV waves by twin lining tunnels with imperfect interfaces embedded in an elastic half-space. Tunn. Undergr. Space Technol. 2019, 85, 319–330. [Google Scholar] [CrossRef]
- Zhang, G.L.; Wang, P.; Zhao, M.; Du, X.; Zhao, X. Seismic structure-water-sediment-rock interaction model and its application to immersed tunnel analysis under obliquely incident earthquake. Tunn. Undergr. Space Technol. 2021, 109, 103758. [Google Scholar] [CrossRef]
- Yasuda, N.; Asakura, T. Seismic response of a cylindrical tunnel with construction joints subjected to longitudinal ground displacement. Tunn. Undergr. Space Technol. 2020, 102, 103408. [Google Scholar] [CrossRef]
- Park, D.; Sagong, M.; Kwak, D.Y.; Jeong, C.G. Simulation of tunnel response underspatially varying ground motion. Soil Dyn. Earthq. Eng. 2009, 29, 1417–1424. [Google Scholar] [CrossRef]
- Miao, Y.; Yao, E.; Ruan, B.; Zhuang, H. Seismic response of shield tunnel subjected to spatially varying earthquake ground motions. Tunn. Undergr. Space Technol. 2018, 77, 216–226. [Google Scholar] [CrossRef]
- Miao, Y.; Yao, E.; Ruan, B.; Zhuang, H.; Chen, G.; Long, X. Improved hilbert spectral representation method and its application to seismic analysis of shield tunnel subjected to spatially correlated ground motions. Soil Dyn. Earthq. Eng. 2018, 111, 119–130. [Google Scholar] [CrossRef]
- Liu, L.; Xu, C.; Du, X.L.; Iqbal, K. Longitudinal seismic response of shield tunnel: A multi-scale numerical analysis. Tunn. Undergr. Space Technol. 2023, 138, 105163. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, H.T.; Li, C.; Yan, X.; Yuan, J.T. Multi-point shaking table test for long tunnel ssubjected to non-uniform seismic loadings–Part I: Theory and validation. Soil Dynam Earthq. Eng. 2018, 108, 177–186. [Google Scholar] [CrossRef]
- Yu, H.T.; Yuan, Y.; Xu, G.; Su, Q.; Yan, X.; Li, C. Multi-point shaking table test for long tunnels subjected to non-uniform seismic loadings—Part II: Application to the HZM immersed tunnel. Soil Dyn. Earthq. Eng. 2018, 108, 187–195. [Google Scholar] [CrossRef]
- Yan, X.; Yu, H.; Yuan, Y.; Yuan, J. Multi-point shaking table test of the free field under non-uniform earthquake excitation. Soils Found. 2015, 55, 985–1000. [Google Scholar] [CrossRef]
- Zhang, N. Effects of a V-shaped canyon with a circular underground structure on surface ground motions under SH wave propagation. Soil Dyn. Earthq. Eng. 2019, 127, 105830. [Google Scholar] [CrossRef]
- Karabalis, D.L.; Beskos, D.E. Numerical methods in earthquake engineering. In Computer Analysis and Design of Earthquake Resistant Structures: A Handbook; Beskos, D.E., Anagnostopoulos, S.A., Eds.; Computational Mechanics Publications: Southampton, UK, 1997; pp. 1–102. [Google Scholar]
- Sun, B.B.; Deng, M.; Zhang, S.; Cui, W.; Wang, C.; Yu, L.; Cao, K. Inelastic dynamic analysis and damage assessment of a hydraulic arched tunnel under near-fault SV waves with arbitrary incoming angles. Tunn. Undergr. Space Technol. 2020, 104, 103523. [Google Scholar] [CrossRef]
- Zhuang, H.Y.; Ren, J.; Miao, Y.; Jing, L.; Yao, E.; Xu, C. Seismic Performance Levels of a Large Underground Subway Station in Different Soil Foundations. J. Earthq. Eng. 2021, 25, 2808–2833. [Google Scholar] [CrossRef]
- Zhao, D.F.; Ruan, B.; Chen, G.X. Validation of the modified irregular loading-reloading rules based on Davidenkov skeleton curve and its equivalent strain algorithm implemented in ABAQUS. Chin. J. Geotech. Eng. 2017, 39, 888–895. (In Chinese) [Google Scholar]
- Jeeho, L.; Fenves, G.L. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar]
- Shinozuka, M.; Jan, C.M. Digital simulation of random processes and its applications. J. Sound Vib. 1972, 25, 111–128. [Google Scholar] [CrossRef]
- Clough, R.W.; Penzien, J. Dynamics of Structures; McGraw Hill: New York, NY, USA, 1993. [Google Scholar]
- Bi, K.M.; Hao, H. Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions. Probabilistic Eng. Mech. 2012, 29, 92–104. [Google Scholar] [CrossRef]
- Du, X.; Zhao, M.; Wang, J. A stress artificial boundary in FEA for near-field wave Problem. Chin. J. Theory Appl. Mech. 2006, 38, 49–56. [Google Scholar]
No. | Model | Incidence Direction | Wave Type | Incidence Angles | |
---|---|---|---|---|---|
Set-1 | 1 | One-sided mountain tunnel model | Left-side incidence | SV-wave | 33.69° |
2 | 26.57° | ||||
3 | 18.43° | ||||
4 | 11.31° | ||||
Set-2 | 5 | Right-side incidence | 33.69° | ||
6 | 26.57° | ||||
7 | 18.43° | ||||
8 | 11.31° |
Soil Types | Density (kg/m3) | Poisson’s Ratio | Shear Wave Velocity (m/s) | Compressive Wave Velocity (m/s) | Initial Shear Modulus (MPa) | Fitting Parameters | ||
---|---|---|---|---|---|---|---|---|
A | B | γ0 (×10−4) | ||||||
Medium-coarse sand | 2000 | 0.25 | 280.18 | 485.28 | 157 | 1.20 | 0.37 | 7.4 |
Bed rock | 2522 | 0.2 | 899.82 | 1469.40 | 2042 | 1.30 | 0.40 | 10.0 |
Parameter | Description | Value |
---|---|---|
Density | 2450 kg/m3 | |
Elastic modulus | 30,000 MPa | |
Poisson’s ratio | 0.18 | |
Dilation angle | 36.31° | |
Flow potential eccentricity | 0.1 | |
The ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive yield stress | 1.16 | |
K | The ratio of the second stress invariant on the tensile meridian | 0.6667 |
Viscosity coefficient | 0.0005 | |
Compression stiffness recovery parameter | 1.0 | |
Tensile stiffness recovery parameter | 0.0 |
Material | Density (kg/m3) | Dynamic Viscosity Coefficient (Ns/m3) | Equation of State Parameter (m/s) |
---|---|---|---|
Water | 1000 | 0.0013 | 1400 |
Incidence Angle/° | Angle between Incident Wave and Normal Direction of Soil–Rock Interface/° | Transmitted Angle of SV-Wave/° | Transmitted Angle of Converted P-Wave/° |
---|---|---|---|
33.69 | 46.31 | 13.01 | 22.95 |
25.67 | 54.33 | 14.65 | 25.98 |
18.43 | 61.57 | 15.89 | 28.31 |
11.31 | 68.69 | 16.86 | 30.16 |
Incidence Angle/° | Angle between Incident Wave and Normal Direction of Soil–Rock Interface/° | Reflected Angle of SV-Wave/° | Reflected Angle of Converted P-Wave/° | Transmitted Angle of SV- or P-Wave/° |
---|---|---|---|---|
33.69 | 66.31 | 66.31 | No reflected converted P-wave | No transmitted wave |
25.67 | 74.33 | 74.33 | ||
18.43 | 81.57 | 81.57 | ||
11.31 | 88.69 | 88.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, E.; Rao, Y.; Liu, M.; Liu, Z.; Cao, A. Study on the Seismic Response of a Water-Conveyance Tunnel Considering Non-Uniform Longitudinal Subsurface Geometry and Obliquely Incident SV-Waves. Appl. Sci. 2024, 14, 4398. https://doi.org/10.3390/app14114398
Yao E, Rao Y, Liu M, Liu Z, Cao A. Study on the Seismic Response of a Water-Conveyance Tunnel Considering Non-Uniform Longitudinal Subsurface Geometry and Obliquely Incident SV-Waves. Applied Sciences. 2024; 14(11):4398. https://doi.org/10.3390/app14114398
Chicago/Turabian StyleYao, Erlei, Yu Rao, Meishan Liu, Zhifang Liu, and Ang Cao. 2024. "Study on the Seismic Response of a Water-Conveyance Tunnel Considering Non-Uniform Longitudinal Subsurface Geometry and Obliquely Incident SV-Waves" Applied Sciences 14, no. 11: 4398. https://doi.org/10.3390/app14114398
APA StyleYao, E., Rao, Y., Liu, M., Liu, Z., & Cao, A. (2024). Study on the Seismic Response of a Water-Conveyance Tunnel Considering Non-Uniform Longitudinal Subsurface Geometry and Obliquely Incident SV-Waves. Applied Sciences, 14(11), 4398. https://doi.org/10.3390/app14114398